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Abstract
The interannual variability of methane emissions from wetland ecosystems of Western Siberia in 
2000–2050 has been investigated. Calculations of CH₄ emission were performed using the approach, 
in which the total daily methane flux is determined by the sum of positive temperatures accumulated 
in the soil at that time and its moisture content. Required characteristics of the soil were obtained using 
regional climate model RegCM4. The reanalysis NCEP-DOE AMIP-II (R2) and data of HadGEM2-ES 
global model for the RCP4.5 and RCP8.5 evolution scenario of the global climate system were used to 
define the initial and boundary conditions. It was found that for Western Siberia’s wetland complexes, 
analyzed in this paper, the model estimates for methane emission in 2000–2013 vary from ~3.5 to ~5.5 
Tg CH₄/yr. The average value of emission is 4.34 TgCH₄/yr. The rate of change of methane emission 
during this period is almost neutral. Growth of CH₄ emission is observed only in the areas of tundra 
and forest tundra. Forecast values of methane emission obtained for the period 2021–2050 for sce-
narios RCP4.5 and RCP8.5 ranges from 3.9 up to 7.6 Tg CH₄/yr. The average emission values are 5.0 
and 5.8 Tg CH₄/yr, respectively. Trends of CH₄ emission for this period are also practically neutral.
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Introduction

Monitoring of the greenhouse gases content in the atmosphere and implementing 
measures to reduce the so-called carbon footprint are today included in the agenda 
of the Government of the Russian Federation and are enshrined in the form of spe-
cific tasks in the National Action Plan for Adaptation to Climate Change, approved 
in December 2019, as well as in the Scientific and Technological Strategy Develop-
ment of the Russian Federation, adopted in December 2016. One of the key tasks 
being solved within the framework of the problem is the creation of specialized ter-
ritories for the implementation of measures to control climate-active gases – carbon 
polygons. As part of the planned work, carbon polygons will be created in almost all 
regions of Western Siberia, which will make this territory the largest research and 
educational platform in the areas of carbon balance control, environmental moni-
toring, establishing the behavior of the climate system of the Siberian region, etc.

The relevance of implementation of the carbon polygons project in Western Si-
beria is due to the presence of the largest wetland complexes, which are natural 
sources of the second most important greenhouse gas after carbon dioxide (CO2) 
– methane (CH₄) (Saunois et al. 2020). Methane affects the chemical composition of 
the atmosphere as well as both the radiation balance and climate of the Earth. Ac-
cording to the latest data the Working Group I Intergovernmental Panel on Climate 
Change (IPCC), the contribution of CH₄ to the increase in global air temperature is 
more than 20% (Canadell et al. 2021).

Latest report of the World Meteorological Organization (WMO) concluded 
that, since the beginning of the industrial era, the content of methane in the surface 
layer of the atmosphere has increased by 253% and reached a level of 1908±2 ppb 
in 2021 (Crotwell et al. 2022). Of particular concern is the increase in atmospheric 
CH₄ concentration growth rate over the last decade, equal on average 9.2 ppb/yr.

The methane content in the atmosphere is determined by the relationship be-
tween the amount of gas entering the atmosphere from the underlying surface level 
(sources), the volume of CH₄ absorbed by the underlying surface, and chemical 
losses in the atmosphere (sinks). The main channel for the sink of atmospheric 
methane (about 90%) is the reaction with hydroxyl radical (OH) in the troposphere. 
As a result of analyzing data for 2008–2017 for all types of sources and sinks, the 
IPCC report established an imbalance in the methane budget. The decadal mean 
CH₄ imbalance increased at the rate of 21 TgCH₄/yr (Canadell et al. 2021).

According to Canadell et al. (2021) the contribution of wetland complexes to 
methane budget are given equal to 159–199 TgCH₄/yr. The paper Zhang et al. (2023) 
provides estimates of global CH₄ emissions from wetlands obtained for the period 
2000–2021. According to Zhang et al. (2023), in 2007–2021, global CH₄ emissions 
have increased by 5–6% compared to the base period 2000–2006. The growth rate 
of emissions during this period is 1.3-1.4 TgCH₄/year, which exceeds the estimate 
of 0.9 TgCH₄/year obtained by Zhang et al. (2017) in ensemble calculations within 
the RCP scenarios. Additionally Zhang et al. (2023) shows that in 2020 and 2021, 
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the growth rate of emissions was maximum and was 5% higher than the trend of the 
previous 20-year period. The estimates obtained for 2020 and 2021 are confirmed 
by the results Feng et al. (2023). Both papers (Zhang et al. 2023 and Feng et al. 2023) 
note that the greatest changes in the growth rate of methane emissions are found 
for East Africa, tropical Asia and temperate Eurasia. At the same time, according 
to Zhang et al. (2023) there are indications that high latitude wetlands have only a 
moderate increase in CH₄.

The established Zhang et al. (2023) and Feng et al. (2023) increase in the con-
tent of methane in the Earth’s atmosphere in 2020 and 2021 is associated with an 
increase in its emission, as well as a decrease in the content of the OH radical. One 
of the key factors influencing the concentration of hydroxyl radical OH in the at-
mosphere is the volume of carbon monoxide (CO) and nitrogen oxides (NOx) pro-
duced by the combustion of fossil fuels (Prather et al. 2012). To explain the increase 
in methane content in the atmosphere in 2020–2021, Peng et al. (2022) conducted a 
study on the impact of CO and NOx emission reductions caused by the COVID-19 
pandemic on OH radical content. At the same time, Peng et al. (2022) note that for 
northern Eurasia, the spring-summer period of 2020 was extremely hot. Increased 
temperature conditions could provoke an increase in CH₄ emission from biogenic 
sources. Thus, the results of these studies confirm a strong positive feedback be-
tween anthropogenic and natural factors of methane balance, which requires more 
in-depth study.

For Western Siberia, the obtained methane emission estimates Bohn et al. 
(2015) have a large uncertainty from 2.42 to 11.19 TgCH₄/yr. In a recent study Xi et 
al. (2023), conducted for the period 2000–2021 for wetland complexes and aquatic 
ecosystems of Western Siberia, methane emission volumes varied from 4.80±0.43 to 
8.29±0.81 TgCH₄/yr. This paper is a continuation of a study Makushev et al. (2016a) 
in which preliminary estimations of the CH₄ emission from wetland complexes in 
Western Siberia were obtained.

Despite the significant amount of performed researches, there is great uncer-
tainty in assessing the contributions of various sources types of methane at the glob-
al and regional levels and their temporal evolution. For example, Zhang et al. (2023) 
notes that for such natural sources of methane as wetlands, the existing uncertainty 
in climate datasets does not allow researchers to formulate an unambiguous conclu-
sion about the impact of rising temperatures or changes in precipitation on the rate 
of increase in CH₄ content in wetlands. The main reasons for this uncertainty are 
the sparse network of observation points (Arshinov et al 2012), the spatiotemporal 
heterogeneity of fluxes from many natural and anthropogenic sources (Glagolev et 
al. 2007; Panikov 1995; Zavarzin 1995), as well as the insufficient use of the capabili-
ties of satellite systems for monitoring of the atmosphere and underlying surface of 
the region.

Figure 1 shows the change in the methane mixture ratio in the upper tropo-
sphere of Western Siberia in 2002–2022, obtained from data of the Atmospheric In-
frared Sounder/Advanced Microwave Sounding Unit (AIRS) hyperspectrometer of 
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the Aqua satellite (Aumann et al. 2003) within the framework of the approach pro-
posed in Lagutin et al. (2012). Studies of methane content in the upper troposphere 
using AIRS data are carried out in two zones of Western Siberia, covering most of 
the region's wetland complexes and having the following boundary coordinates: 
zone 1 (55°–65° N, 60°–90° E); zone 2 (45°–55° N, 60°–90° E). Before the failure of 
the Advanced Microwave Sounding Unit (AMSU), also installed on board Aqua, in 
2016, both, AIRS and AMSU, operated as a hyperspectral suite. This operation mode 
made it possible to reconstruct the vertical profiles of temperature and humidity of 
the atmosphere with ~80% coverage of the observation area by clouds. The paper 
Lagutin et al. (2022) proposes an approach for restoring the «all-weather» operating 
mode of AIRS using data from Advanced Technology Microwave Sounder (ATMS) 
(Weng et al. 2013) installed on the Suomi-NPP, NOAA-20 and NOAA-21 satellites, 
that a part of NASA's Joint Polar Satellite System (JPSS) program (Goldberg et al. 
2013). The Lagutin et al. (2022) shows that the inclusion of ATMS data to processing 
algorithms makes it possible to obtain geophysical results that practically coincide 
with the original AIRS/AMSU data, and thereby continue to obtain a unique more 
than 20-year series of hyperspectral satellite data for carrying out climate research 
and analysis of the gas composition of the atmosphere.

Figure 1. Annual cycle and interannual variability of the methane mixture ratio CH4AIRS 
in the upper troposphere of Western Siberia according to AIRS hyperspectrometer of Aqua 
satellite for two study zones: a) zone 1 (55°–65° N, 60°–90° E); b) zone 2 (45°–55° N, 60°–90° 
E).

AIRS/AMSU data shown in Figure 1 clearly shows an irregular trend, the pres-
ence of maximums in the annual cycle in winter and summer, as well as the pres-
ence of periods with positive and negative (for example, in 2010) rates of its in-
crease. Under the assumption of a constant rate of atmospheric methane sink due 
to the reaction with the OH radical (Belan 2010; Montzka et al. 2011), the reasons 
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for the observed variations may be changes in the rate of methane emission from 
the wetland complexes located in Western Siberia, changes in the amount of CH₄ 
entering the region’s atmosphere from other territories as a result of the transfer of 
air masses, as well as variations in methane emissions from anthropogenic sources.

This paper explores the first reason. The main goals of the paper are to establish 
interannual variability and trends in methane emissions from the wetland com-
plexes in Western Siberia in 2000–2013 and 2021–2050 within the framework of the 
approach Christensen and Cox (1995) using data from the regional climate model 
RegCM4/CLM4.5 (Pal et al. 2007; Giorgy et al. 2012), as well as comparing the ob-
tained results with ground-based observation data.

Materials and methods

Model of methane emission from the Western Siberia’s wetland complexes

Modeling of methane emissions from the wetland complexes in the region was car-
ried out using the approach proposed in Christensen and Cox (1995). The choice of 
this model is due to its consideration of the main factors that determine the emis-
sion of methane by wetland ecosystems: soil temperature, vertical distribution of 
soil moisture content, which is a better predictor of methane flux from wetlands 
than the level of wetland waters, as well as methane emissions in the aerobic zone 
(see, for example, Christensen et al. (2003); Deppe et al. (2010); Estop-Aragones 
et al. (2013); Fan et al. (2014) and references therein). It was used in Denisov et al. 
(2010); Denisov et al. (2011); Mokhov et al. (2007) to assess methane emissions 
from wetland complexes in Northern Eurasia, and in Wania et al. (2013) to compare 
methane emission modeling programs within the framework of the international 
WETCHIMP project.

In the model used in the study Christensen and Cox (1995), CH₄ emission 
at time (day of the year) is determined by the sum of positive temperatures ac-
cumulated in the soil at that time and its moisture content. The daily methane flux 
FCH₄[mgCH₄ m-2 day-1] is described by the expression

.             (1)

Here N is the number of soil layers in which methane emissions are calculated;  
– temperature (ºC) of the i-th layer thickness ∆Zᵢ at the moment t; Θᵢ – relative mois-
ture content of the layer (fraction of the maximum moisture content); Pᵢ(t) – meth-
ane productivity in the layer i at the moment t; Q₁₀ is the temperature coefficient, 
and H(Tᵢ) is the Heaviside step function (1 at Tᵢ > 0 and 0 at Tᵢ ≤ 0), which excludes 
frozen soil layers from consideration.
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When calculating methane emissions, it was assumed that the main contribu-
tion comes from the top layer of wetland soils, the thickness of which is 120 cm. 
In the climate model RegCM4/CLM4.5 this zone is divided into eight layers, the 
lower boundaries of which are, respectively, 1.8, 4.5, 9.1, 16.6, 28.9, 49.3, 82.9 and 
120.0 cm. The temperature coefficient used in the calculations varied from 2 to 2.6 
in accordance with the distribution obtained in Zhou et al. (2009) (see also Kotsy-
urbenko et al. (2004); Riley et al. (2011); Zhu et al. (2014).

Methane productivity in each layer of moistened soil at time t, following Chris-
tensen and Cox (1995), linearly depends on the integral of positive temperature 
values

.                              (2)

Since α = 42.5 [mgCH₄ m-3 day-1] and β = 0.0375 [mgCH₄ m-3 day-2 ºC-1] are 
empirical coefficients established in Christensen and Cox (1995) based on experi-
mental data for the tundra, a correction factor  was introduced in the equation (2). 
This factor reflecting the ratio of the amount organic matter in the simulated cell 
RegCM4/CLM4.5 for other botanical-geographical areas of the region to a similar 
value for the tundra zone. This coefficient reflects the ratio of the amount of organic 
matter in the modeled cell of RegCM4/CLM4.5 for other botanical-geographical 
areas of the region to a similar value for the tundra zone. This coefficient was found 
according to the data presented in the database Sheng et al. (2004).

RegCM4/CLM4.5 model and computational experiments design

The temperature Tᵢ and relative moisture content Θᵢ of each soil layer required for 
calculations were determined using the regional climate model RegCM4/CLM4.5 
(Pal et al. 2007; Giorgy et al. 2012). The dynamic core of the model is the hydro-
static version of the mesoscale model MM5. A description of the main modules of 
RegCM4 and the model configuration used in the calculations are given in our pre-
vious works (Lagutin et al. 2014; Lagutin et al. 2017; Lagutin et al. 2018; Makushev 
et al. 2016b). To calculations of methane emissions the modeling results obtained 
for the region with coordinates (50°–75° N, 55°–95° E) were used. The analysis of 
the results was carried out only for model cells falling within the zone (55°–73°N, 
60°–90°E) and containing, in accordance with the database Sheng et al. (2004), wet-
land complexes. The cells of the region containing wetland complexes and the pro-
portions of wetlands in them are shown in Figure 2 on a grid with a spatial resolu-
tion of 40×40 km, adopted in the RegCM4 model.

When modeling the characteristics of the climate system, data from the NCEP-
DOE AMIP-II (R2) reanalysis (Kanamitsu et al. 2002) and the HadGEM2-ES global 
model (Collins et al. 2011) were used to set the initial and boundary conditions 
for the RCP 4.5 and RCP 8.5 scenarios of possible evolution of the climate system 
(Moss et al. 2010).
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The quality of the RegCM4 model’s reproduction of surface air temperature and 
anomalies of total annual precipitation intensity, as well as the annual cycle and 
interannual variability of outgoing long-wave radiation, was verified by the authors 
in a series of computational experiments presented in Lagutin et al. (2014); Lagutin 
et al. (2017); Lagutin et al. (2018); Makushev et al. (2016b). The main result of pre-
vious research is the conclusion about the successful use of the RegCM4 model in 
describing the contemporary climate of Western Siberia and the possibility of its use 
for modeling future climate. To verify the quality of modeling of temperature and 
soil moisture, additional comparisons of model results with ERA5 reanalysis data 
(Hersbach et al. 2020) were carried out.

Figure 3 shows the results of comparisons of the temperature and moisture 
content in the soil layers in depth 0–7 cm, 7–49 cm and 49–91 cm obtained us-
ing the RegCM4/CLM4.5 model with ERA5 reanalysis data for the study domain 
(55°–73°N, 60°–90°E). It has been established that for the territory of Western Si-
beria for 2000–2013 the temperature difference does not exceeds 1 ºC, basically. 
The volumetric moisture content bias varies from 10 to 20% depending on the layer 
depth and season. Note that such error in moisture content is acceptable in this class 
of problems.

Figure 2. Wetland complexes of Western Siberia and their fractions on a 40×40 km grid of 
the RegCM4 model according to data from (Sheng et al. 2004).
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Figure 3. Comparisons of ERA5 reanalysis (Hersbach et al. 2020) (solid red line) and 
RegCM4/CLM4.5 data (dashed blue line) for soil temperature (a) and volumetric moisture 
content (b) for the study domain in three ERA5 soil layers: (1) – layer 0–7 сm, (2) – layer 
7–49 сm, (3) – layer 49–91 cm.

Result

At the first stage of the research, computational experiments were carried out to test 
the possibility of using a modified empirical model Christensen and Cox (1995), 
created on the basis of experimental data for the tundra, to estimate methane emis-
sions in the taiga zone of Western Siberia. Calculations within the framework of 
model (1)–(2) were carried out for subzones of the northern, middle and southern 
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taiga using the boundaries given in Glagolev et al. (2012), and for the territory of 
the Tomsk region, the wetland complexes of which are located in the subzones of 
the middle and southern taiga. The results of calculations of methane emissions for 
1999–2010 are shown in Figure 4.

A comparison of the obtained in our study data with the results of Glagolev 
and Shnyrev (2008) showed that the average values of methane emissions for these 
zones 3.95 and 0.94 TgCH₄/yr are in good agreement with ground-based observa-
tion data 3.95 and 0.67 Tg CH₄/yr.

The comparison results presented above led the authors to the conclusion that it 
is possible to use the approach Christensen and Cox (1995), in which the total daily 
methane output is determined by the sum of positive temperature values accumu-
lated in the soil at that time and its moisture content, and the RegCM4/CLM4.5 data 
for modeling methane emission from the wetland complexes of Western Siberia.

Figure 4. Methane emissions from the wetland complexes in Western Siberia in 1999–2010 
according to the results of the RegCM4/CLM4.5 model: a) taiga zone; b) the territory of the 
Tomsk region.

Results of calculations of CH₄ emissions from the wetland complexes of West-
ern Siberia for the period 2000–2050 are shown in Figure 5. Analysis of these data 
leads to the following conclusions.

1. It has been established that for the wetland ecosystems of Western Siberia 
for 2000–2013 model estimates of methane emissions vary from ~3.57 to 5.52 Tg/
yr. The rate of change in methane emissions during this period is practically neutral, 
the average emission value is 4.34 Tg/yr. An increase in CH₄ emissions is observed 
only in the tundra and forest-tundra zones.

2. Obtained in this work for 2000–2013 the average methane emission es-
timate of 4.34 Tg/year is in good agreement with the result of 3.91 ± 1.29 Tg/yr 
(Glagolev et al. 2011). Established in work for 2003–2009 the average emission of 
4.6 Tg/yr is slightly higher than the result of 3.0±1.4 Tg/yr, which was obtained in 
Kim et al. (2011) for the same period.

3. The range of changes in the predicted values of methane emissions for the 
RCP 4.5 and RCP 8.5 scenarios, shown in Figure 5 for 2021–2050, is larger and 
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varies from 3.9 to 7.6 Tg/yr. The average emission values are 5.0 and 5.8 Tg/yr, re-
spectively. CH₄ emission trends during this period are also practically zero. This is 
due to the fact that the increase in temperature is compensated by a decrease in soil 
moisture content.

Figure 5. Annual methane emission from wetland complexes of Western Siberia obtained 
using the RegCM4/CLM4.5 data. The initial and lateral boundary conditions for the period 
2000–2013 (bold red line) are provided by the NCEP-DOE AMIP-II (R2) (Kanamitsu et 
al. 2002) reanalysis and for the period 2013–2050 (bold blue line) according to the global 
model HadGEM2-ES (Collins et al. 2011) for RCP 4.5 (a) and RCP 8.5 (b) scenarios. Dashed 
blue lines are the growth rate of methane emission.
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Discussion

Western Siberia is the largest region on the planet covering ~2.9 M km2 within 62°–
89°E and 53°–73°N (Xi et al. 2023), containing the highest latitude wetland system. 
The area of wetlands and aquatic systems of the region accounts for approximately 
27% of the total global one. According to contemporary estimates, the wetland com-
plexes of Western Siberia contain about 40% peat deposits over the world (see Xi 
et al. (2023) and references in it). These deposits, partly located in the permafrost 
zone, contain significant amounts of organic carbon (about 70 Pg C). With a warm-
ing climate and thawing soil, large amounts of soil carbon can be released in per-
mafrost zones. Fast degradation of this carbon will, in turn, lead to the release of 
methane into the atmosphere.

Lakes and open water bodies are the second largest source of methane after 
wetlands (Kyzivat et al. 2022). According to Peregon et al. (2009), the area of aquatic 
ecosystems in the region, such as lakes, is ~0.081 million km2.

In a recent study, Xi et al. (2023) obtained quantitative estimates of methane 
emissions from wetland complexes and aquatic ecosystems in Western Siberia. In 
the calculations, the authors used two biogeochemical models of methane emis-
sion from wetland complexes and three data sets with information about aquatic 
ecosystems to set initial conditions (for details, see (Xi et al. 2023). In the figure 6, 
by blue dots and a line shown the results of modeling the total methane emissions 
from wetland complexes and aquatic system obtained Xi et al. (2023) using data sets 
MF (Matthews and Fung 1987) for wetlands and GSW (Pekel et al. 2016) for aquatic 
ecosystems.

The results of our studies obtained within RegCM4/CLM4.5 model for 2000-
2021 are generally consistent with the conclusions of Xi et al. (2023). Red points and 
line on Figure 6 are the total methane emission from wetland and aquatic system. 
The contribution of wetland complexes for RCP 4.5 and RCP 8.5 scenarios is shown 
in Figure 6. To take into account the contribution of aquatic system, the results Xi et 
al. (2023) obtained using the GSW data set were used.

Conclusion

The paper presents the results of study of the interannual variability of methane 
emissions from wetland ecosystems of Western Siberia in 2000–2050. The contri-
bution of wetland complexes to the total CH₄ emission was obtained within the 
framework of the emission model Christensen and Cox (1995). In this model the 
total daily methane flux is determined by the sum of positive temperatures accu-
mulated in the soil and the soil moisture content. Characteristics of the soil were 
obtained using regional climate model RegCM4/CLM4.5 (Pal et al. 2007; Giorgy et 
al. 2012). The information basis of the study is the results of the reanalysis NCEP-
DOE AMIP-II (R2) (Kanamitsu et al. 2002) obtained for 2000–2013. HadGEM2-ES 
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global model forecast data (Collins et al. 2011) within the RCP4.5 and RCP8.5 sce-
narios of possible evolution of the global climate system were used for 2013–2050.

It is shown that our results are in good agreement with ERA5 reanalysis data 
(Hersbach et al. 2020), as well as the results of studies of methane emissions from 
wetland complexes and aquatic system of Western Siberia published in the papers 
by other authors (Glagolev et al. 2011; Xi et al. 2023; Zhang et al. 2023; Feng et al. 
2023).

Figure 6. Total methane emission from wetland and aquatic system of the Western Siberia 
region from 2000 to 2021 for RCP 4.5 (a) and RCP 8.5 (b) scenarios. Blue points and line 
are results of Xi et al. (2023), red points and line are our results obtained within RegCM4/
CLM4.5 model for 2000–2021.
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