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Abstract
This study aimed to examine the fatty acid profiles of 10 newly discovered microalgae strains hailing 
from phylogenetic groups valued in biotechnology. The fatty acid profiles were characterized utilis-
ing principal component analysis, resulting in several notable findings. First, our analysis revealed 
that certain characteristics of these profiles align well with those previously identified in similar study 
groups. Most notably, the marine strain Chlorella vulgaris MI-Ch19-a was found to have the high-
est concentration of saturated fatty acids, measuring 60.48%. Furthermore, this strain also boasted 
the highest α-linolenic content among those analyzed, representing 22.14% of the total fatty acid 
spectrum. Each strain under study demonstrated significant amounts of 16:0 (with a range spanning 
18.43% to 38.28%), 16:1n-7 (ranging from 17.05% to 32.55%), and 20:5n-3 (ranging from 4.96% to 
20.13%). When considering the phylogenetic influence, which was particularly marked in the levels 
of total saturated fatty acids and polyunsaturated fatty acid content, it was the prominence of the n-3 
polyunsaturated fatty acids that stood out amongst the phylogenetic groups. Lastly, the strains Thalas-
siosira eccentrica and Cyclotella atomus MI-B47 exhibited the highest volumes of eicosapentaenoic acid 
(20:5n-3). 
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Introduction

Microalgae, a versatile and abundant group of organisms, are found across various 
aquatic and terrestrial ecosystems. Their potential as a source of valuable bioac-
tive compounds is increasingly appreciated, as highlighted in recent publications 
(Yaakob et al. 2021). These organisms are skilled at synthesising a vast array of fatty 
acids (FAs), which exhibit diverse properties and hold applications for biofuel pro-
duction, food and feed additives, and the creation of pharmacological and cosmetic 
preparations (Sathasivam et al. 2019). Species of microalgae that accumulate large 
quantities of saturated and monounsaturated FAs are believed to hold potential for 
biofuel production. Meanwhile, species that amass long-chain polyunsaturated FAs, 
especially from the Omega-3 group, are considered valuable for procuring high-
quality food products (Sajjadi et al. 2018; Maltsev et al. 2020). This has prompted 
interest in discovering new species and strains of microalgae with optimal FA com-
positions or the capacity for synthesising specific FAs in large volumes.

Several recent reviews have scrutinized the FA composition of microalgae (Lang 
et al. 2011; Galloway and Winder 2015; Cañavate 2018; Jónasdóttir 2019). Some 
suggest a degree of specificity in FA composition at the level of broad taxonomic 
groups (Taipale et al. 2013). Some put forth dependency on habitat for determin-
ing the predominance of certain FA groups (Galloway and Winder 2015; Cañavate 
2018). Peltomaa et al. (2019) compared the profile and fatty acid content of strains 
from marine, brackish and freshwater habitats and concluded that although the 
fatty acid profiles are genetically ordered, the fatty acid content depended on the 
habitat by 39% and 59% in diatoms and dinoflagellates, respectively. There is also 
an ongoing debate about the influence of marine or freshwater origins of the strains 
on the FA composition, with differing conclusions. Addressing these discrepancies 
necessitates further research. A comprehensive understanding of FA compositions 
across varying taxonomic and ecological groups of microalgae is indispensable for 
several practical applications. It helps estimate the trophic value of diverse phyto-
plankton groups, monitor FA movement along food chains, and enhance quality of 
aquaculture feeds (Taipale et al. 2009; Sathasivam et al. 2019).

Progressing towards a unified understanding will also refine the bioprospecting 
strategy for identifying species and strains of biotechnologically valuable microal-
gae. Searches for strains with desired parameters can then be better targeted towards 
ecosystems. Thus, our work focuses on analyzing the FA profile of 10 new strains of 
freshwater, soil, and marine microalgae from relevant phylogenetic groups. Moreo-
ver, we aim to ascertain patterns in FA profiles and identify FAs that can serve as 
marker indicative of habitat or phylogenetic group among these new strains. Our 
study has implications for industrial biofuel production, food additives, and feed 
creation, including aquaculture. Additionally, our work showcases the importance 
of selecting an appropriate microalgae strain for producing specific FAs of interest.
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Materials and methods

Algae cultures

Ten microalgae strains were selected for the experiment, which are stored in the 
CAMU collection and isolated from marine, freshwater and soil habitats (Table 1).

Microalgae cultivation

The marine microalgae were cultured in f/2 medium based on 10 psu of filtered and 
autoclaved Azov seawater (ASW), while the rest were cultured in BBM medium 
(Bischoff and Bold 1963) at 20 °C in a light-dark cycle (16:8 = light:dark) at a low 
light intensity of 70–100 µmol m-2 s-1. Algae cultures were grown to an early station-
ary phase before being used in the experiment.

Table 1. Distribution of isolated microalgae species by taxonomic class

Taxa Species Strain Geographic origin
Cyanophyceae Nostoc sp. MI-C84-а The Azov Sea
Chlorophyceae Chlorococcum oleofaciens Trainor 

et Bold
MZ-Ch4 Soil, Samara Forest

Trebouxiophyceae Chlorella vulgaris Beijerinck MI-Ch7-a River Molochnaya
Trebouxiophyceae Chlorella vulgaris MI-Ch19-а The Azov Sea
Chlorodendrophyceae Tetraselmis contracta (N.Carter) 

Butcher
MI-Ch6-a The Azov Sea

Bacillariophyceae Tabularia tabulata (C.Agardh) 
Snoeijs

MI-B38 The Azov Sea

Bacillariophyceae Navicula cryptocephala Kützing MI-B42 The Azov Sea
Bacillariophyceae Cyclotella atomus Hustedt MI-B47 The Azov Sea
Bacillariophyceae Thalassiosira eccentrica 

(Ehrenberg) Cleve
MI-B53 The Azov Sea

Cryptophyceae Hemiselmis sp. MI-C58 The Azov Sea

Fatty acid analysis

To determine the fatty acid composition, microalgae cells were centrifuged at 4000 
rpm for 10 min and washed three times with distilled water. After washing, the 
algae biomass was immediately resuspended in 10 mL of hot isopropyl alcohol that 
contained 20 mg L-1 ionol at 70 °C for 20 min. The samples were stored at -20 °C 
until analysis. Lipid extracts were prepared by the Bligh and Dyer (1959) method 
with Palmer's recommendations (1971). The composition of FAs was determined 
in lipid extracts by gas-liquid chromatography using a Carlo Erba chromatograph 
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(Italy) with glass capillary columns (2.5 × 3 mm). Chromosorb W/DP with Silar 
5CP phase (Serva, Germany) at an ion concentration of 10% at temperatures of 140 
to 250 °C with steps of 2 °C min-1 (injector temperature 210 °C, detector tempera-
ture 240 °C) was used as a carrier.

Statistics

All measurements were made in three repetitions. Data are presented as mean val-
ues and standard errors. Statistical analysis was performed using XLSTAT 2018 
(New York, USA). The data in graphs and tables are presented as mean values and 
standard deviations. Statistics were obtained in the Microsoft Excel program (ver. 
1903) using one-factor analysis of variance (ANOVA). The reliability of the differ-
ences between the indices was calculated using the Tukey-Kramer post hoc test. 
The results with p <0.05 were considered statistically significant. The relationships 
between parameters were analyzed with principal component analysis (PCA). Sta-
tistical calculations and graphing were performed using Statistica ver. 12.0 software.

Result

Twenty-three FAs containing between 12 and 22 carbon atoms in the chain were 
identified in ten microalgae strains. The composition of FA of the strains is present-
ed in Table 2. Such FAs as 14:0, 16:0, 18:0, 16:1n-7, 18:1n-9, 18:2n-6, and 18:3n-3 
were observed in 80–90% of the studied samples and their number was significant 
and exceeded 1% in most cases. The group of rare FAs was formed by 12:0, 16:1n-5, 
16:2n-4, 18:2n-9, 16:3n-3, 16:4n-3, and 22:6n-3, but its amount varied significantly 
in the strains studied. The strains also differed in the total amount of saturated fatty 
acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids 
(PUFA) (Table 2).

Table 2. Fatty acid composition (as a percentage of total fatty acids) found in isolated mi-
croalgae kept in batch cultures. The letters indicate significant differences among species by 
fatty acid
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MI-
C84-а

MZ-
Ch4

MI-
Ch7-а

MI-
Ch19-а

MI-
Ch6-а

MI-B38 MI-B42 MI-B47 MI-B53 MI-C58

12:0 n.d.* 0.13± 
0.01

n.d. 3.1±0.52 n.d. n.d. n.d. n.d. n.d. n.d.

14:0 1.14± 
0.12

0.15± 
0.01

n.d. 0.27±
0.01

0.5±0.03 4.58±
0.65

2.72±
0.42

1.17±
0.88

15.7±1.32 1.57±
0.85
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MI-
C84-а

MZ-
Ch4

MI-
Ch7-а

MI-
Ch19-а

MI-
Ch6-а

MI-B38 MI-B42 MI-B47 MI-B53 MI-C58

16:0 22.63± 
3.52

18.43± 
2.15

17.53±
2.54

24.08±
4.11

21.32±
3.15

27.11±
4.14

38.28±
3.52

21.15±
2.19

18.43±
2.34

18.24±
2.91

18:0 62.28± 
5.66

35.97± 
3.72

16.04±
1.13

33.03±
2.15

1.25±
0.42

16.18±
1.17

6.83±
0.75

n.d. 2.32±
0.55

n.d.

16:1n-9 n.d. n.d. n.d. 1.16±
0.18

3.15±
0.73

7.85±
0.77

n.d. n.d. n.d. 5.83±
0.58

16:1n-7 4.13± 
0.52

1.57± 
0.19

0.95±
0.02

0.61±
0.01

2.93±
0.16

17.05±
1.15

32.55±
2.11

29.85±
3.14

21.18±
2.17

n.d.

16:1n-5 n.d. 0.71± 
0.01

0.54±
0.01

n.d. n.d. n.d. n.d. n.d. n.d. n.d.

18:1n-9 1.21± 
0.22

2.86± 
0.73

12.33±
1.22

12.88±
1.67

7.85±
0.92

3.71±
0.73

2.19±
0.82

n.d. 1.34±
0.32

1.54±
0.41

18:1n-7 n.d. 12.75± 
1.52

n.d. n.d. 3.53±
0.62

n.d. 1.29±
0.55

n.d. n.d. n.d.

20:1n-9 n.d. n.d. n.d. n.d. 2.15±
0.62

n.d. n.d. n.d. n.d. 8.47±
0.78

16:2n-6 n.d. 3.04± 
0.42

7.5±
0.64

n.d. n.d. 0.35±
0.01

1.33±
0.11

5.84±
0.43

n.d. n.d.

16:2n-4 n.d. n.d. n.d. n.d. n.d. 3.11±0.32 n.d. n.d. 2.23±
0.22

n.d.

18:2n-9 n.d. n.d. n.d. n.d. n.d. n.d. 1.13±
0.19

n.d. n.d. n.d.

18:2n-6 
LA

4.35± 
0.82

5.98± 
0.55

20.41±
3.15

7.3±
0.92

4.42±
0.67

1.22±0.14 2.41±
0.11

n.d. 1.2±
0.08

4.26±
0.14

16:3n-4 n.d. n.d. n.d. n.d. n.d. 4.52±0.52 0.36±
0.02

10.55±
0.74

10.35
±1.02

n.d.

16:3n-3 n.d. 3.81± 
0.42

4.51±
0.84

n.d. n.d. n.d. n.d. n.d. n.d. n.d.

18:3n-6 
GLA

n.d. 3.22±
0.56

n.d. 3.29±
0.72

0.35±
0.03

0.78±0.04 0.48±
0.01

n.d. n.d. n.d.

18:3n-3 
ALA

1.21± 
0.22

8.63±
0.54

18.07±
1.13

13.15±
1.22

22.14±
2.15

n.d. 0.85±
0.02

n.d. 3.54±
0.45

12.48±
1.37

16:4n-3 n.d. n.d. n.d. n.d. 14.82±
1.18

n.d. n.d. 1.15±
0.35

n.d. n.d.

18:4n-3 
SDA

n.d. n.d. n.d. n.d. 6.33±
0.73

0.85±
0.09

1.17±
0.13

8.84±
0.78

4.15±
0.75

28.1±
1.84

20:4n-6 
ARA

n.d. n.d. n.d. n.d. 0.56±
0.03

6.97±
0.75

n.d. n.d. 0.42±
0.01

n.d.

20:5n-3 
EPA

n.d. n.d. n.d. n.d. 7.1±0.42 4.96±
0.15

5.31±
0.84

20.13±
1.65

15.36±
1.32

15.52±
1.89

22:6n-3 
DHA

n.d. n.d. n.d. n.d. n.d. n.d. 1.04±
0.02

n.d. 2.28±
0.15

n.d.
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MI-
C84-а

MZ-
Ch4

MI-
Ch7-а

MI-
Ch19-а

MI-
Ch6-а

MI-B38 MI-B42 MI-B47 MI-B53 MI-C58

Other 3.05± 
0.72

1.28±
0.05

2.12±
0.22

1.13±
0.15

1.6±0.18 0.76±
0.02

2.06±
0.12

2.32±
0.54

1.15±
0.35

3.95±
0.83

∑SFA 86.05± 
7.32

54.68±
4.74

33.57±
3.16

60.48±
5.51

23.07±
3.72

47.87±
4.13

47.83±
3.56

22.32±
2.26

36.45±
3.72

19.81±
2.23

∑MUFA 5.34± 
0.86

17.89±
2.86

13.82±
1.72

14.65±
1.46

19.61±
2.14

28.61±
1.86

36.03±
3.72

29.85±
3.14

22.52±
2.26

15.84±
1.22

∑PUFA 5.56± 
0.76

24.68±
3.47

50.49±
4.35

23.74±
1.65

55.72±
3.78

22.76±
1.26

14.08±
0.96

46.51±
2.48

39.53±
2.34

60.4±
3.87

∑n-3 
PUFA

1.21± 
0.22

12.44±
0.76

22.58±
2.16

13.15±
1.22

50.39±
3.71

5.81±
0.23

8.37±
0.78

30.12±
2.26

25.33±
1.96

56.14±
3.75

∑n-6 
PUFA

4.35± 
0.82

12.24±
0.84

27.91±
2.64

10.59±
1.56

5.33±
0.65

12.43±
0.82

4.22±
0.11

5.84±
0.43

1.62±
0.08

4.26±
0.14

n-3:n-6 0.28 1.02 0.81 1.24 9.45 0.47 1.98 5.16 15.64 13.18

Note: *n.d. not detected.

Cyanophyceae

The marine strain Nostoc sp. MI-C84-a is characterized by a high SFA content in 
the FA spectrum. The leading position is occupied by 18:0, accounting for 62.28% 
of all FAs. Of the MUFAs and PUFAs, 16:1n-7 and 18:2n-6 are predominant. PUFA 
n-3 and PUFA n-6 are restricted to linoleic (LA) and α-linolenic (ALA) acids only 
(Table 2).

Green microalgae

Of the green microalgae, strains from different classes and different habitats were 
studied. The mean content of green microalgae SFA was 42.95%, MUFA was 16.49%, 
and PUFA was 38.66%. The highest SFA content was found for the marine strain 
Chlorella vulgaris MI-Ch19-a at 60.48%. In the freshwater strain, the amount of SFA 
was almost two times less (Table 2). Another characteristic of the freshwater strain 
was the higher content of PUFA, and among them, 18:2n-6 and 18:3n-3.

Chlorococcum oleofaciens MZ-Ch4 was also characterized by a high amount of 
SFA. The basis of the FA spectrum of Chlorococcum oleofaciens MZ-Ch4 comprised 
18:0, 16:0, 18:1n-7 and 18:3n-3. The total content of n-3 PUFA and n-6 PUFA was 
close to 12.24_12.44%, with ALA predominating, accounting for 8.63% of the total 
spectrum of FA. 
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The spectrum of FA of Tetraselmis contracta MI-Ch6-a differed from other 
green microalgae by the low content of SFA and MUFA and high amount of PUFA 
(Table 2). At the level of individual FAs, 16:0 of SFA, 18:1n-9 of MUFA, and 18:3n-3, 
16:4n-3 of PUFA were predominant. The total PUFA content for n-3 was more than 
five times higher than that for n-6 PUFA. The amount of ALA was 22.14% of the 
total spectrum of FAs and was the highest among the strains studied in this work.

Bacillariophyceae

The four diatom strains studied had an average SFA content of 38.62%, a MUFA 
content of 29.25% and a PUFA content of 30.72%. All strains were characterized by 
a high content of 16:0 (from18.43% to 38.28%), 16:1n-7 (from 17.05% to 32.55%), 
and 20:5n-3 (from 4.96% to 20.13%). Navicula cryptocephala MI-B42 had the low-
est PUFA (14.08%) and Cyclotella atomus MI-B47 was the highest (46.51%). Fur-
thermore, Cyclotella atomus MI-B47 had the highest n-3 PUFA content of 30.12% 
(eicosapentaenoic acid (EPA) 20.13%, stearidonic acid (SDA) 8.84%). Thalassiosira 
eccentrica MI-B53 had slightly lower (25.33%) PUFA content, but was dominated by 
EPA with 15.36% and SDA with 4.15%. Tabularia tabulata MI-B38 was distinctive 
for its high n-6 PUFA content (12.43%). Among the n-6 PUFAs, ARA was predomi-
nant (6.97%).

Cryptophyceae

Hemiselmis sp. MI-C58 differed from all strains studied in the highest PUFA content 
of 60.4%, among which n-3 PUFAs were predominant. SDA (28.1%), EPA (15.52%) 
and ALA (12.48%) were the leading in terms of number. The n-6 PUFAs were only 
represented by LA with 4.26%.

Phylogeny and habitat explaining proportional fatty acid profiles

The principal component analysis for the entire group of variables showed that the 
first two components accounted for 78.18% of the total changes observed in the 
PCA (Fig. 1). In this analysis, the greatest contribution with a negative correlation 
coefficient in PCA 1 is the belonging of microalgae strains to a particular phylo-
genetic group, with a positive one in the number of SFAs and negative ones in the 
number of PUFAs in general, with n-3 PUFAs and the ratio n-3:n-6. PCA 2 shows 
the main patterns of variation in FA profile associated with habitat conditions. The 
greatest dependence on habitat conditions is shown by the amount of n-6 PUFA, 
which is also shown by the moderate strength of the relationship with the total con-
tent of PUFA. PCA 3 describes only 14.96% of the total variance, but because it has 
an eigenvalue greater than 1, it was selected for analysis. This component reflects the 
MUFA content and in this study has little relationship with both the strain's habitat 
conditions and its phylogenetic group membership.
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Figure 1. PCA plot of microalgae strains based on their fatty acid profiles: SFA, MUFA, 
PUFA, n-3 PUFA, n-6 PUFA – total amount of SFA, MUFA, PUFA, n-3 PUFA, n-6 PUFA, 
respectively; n-3:n-6 is the ratio of n-3 PUFA to n-6 PUFA; Phyl – the class level of the phy-
logenetic group membership of the strain; HabExpl – habitat conditions of the strain.

Discussion

Microalgae have the ability to synthesize various fatty acids (FAs) found in cells in 
the free state or as part of various lipids, including triacylglycerols (TAG), phospho-
lipids, and glycolipids (Li-Beissona et al. 2019). The specific properties of these com-
pounds are largely determined by the FAs that comprise them, and the properties 
of FAs depend on the length of the hydrocarbon chain, the presence, location, and 
number of double bonds between carbon atoms, the presence of specific functional 
groups, and branching of the hydrocarbon chain. Different groups of lipids are not 
identical in terms of FA composition. For example, previous studies have found 
that TAGs predominantly contain saturated fatty acids (SFA) and monounsaturated 
fatty acids (MUFA), while polar lipids contain polyunsaturated fatty acids (PUFA) 
(Xin et al. 2019; Harwood 2019). Moreover, recent reviews have reported that mi-
croalgae also exhibit a variation in FA profile depending on their habitat, including 
characteristics such as saturated, unsaturated, and long-chain FA content (Sharath-
chandra and Rajashekhar 2011; Galloway and Winder 2015; Cañavate 2018).

Our studies also suggest that there are consistent features in the FA composition 
of microalgae, as established by previous studies for certain phylogenetic groups. 
However, variations in FA composition related to the peculiarities of the strain's 
habitat conditions are also observed. The principal component analysis (PCA) re-
sults showed that phylogenetic dependence is most pronounced at the level of the 
total content of SFA and PUFA, and among the latter, at the amount of n-3 PUFA. 
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The habitat conditions of the microalgae strain had the greatest influence on the 
amount of n-6 PUFA. Changes in FA composition with variations in temperature, 
availability of nutritional elements in microalgae culture, and salinity of the me-
dium have been well described (Cordeiro et al. 2017; Maltsev et al., 2018; Aboim 
et al., 2019). For instance, when marine strains were grown under different salinity 
conditions (10 to 35 psu), Desmodesmus sp. nl3 showed an increase in MUFA from 
9.47% to 29.85% and a decrease in PUFA from 71.53% to 48.26% (Luu et al. 2020). 
This increase in unsaturated FAs has also been observed in Ulva intestinalis Lin-
naeus (Nesterov et al. 2013), indicating that n-3 PUFA and n-6 PUFA are involved 
in the adaptation of the alga to changes in habitat conditions, including water salin-
ity, temperature, oxygen saturation, and acidity of the medium.

As a distinct phylogenetic group, cyanobacteria are characterized by the pre-
dominance of 16:0, 16:1 and FAs with 18 carbon atoms (Lang et al. 2011). Depend-
ing on the number of certain FAs in the profile, 4 to 5 groups have been proposed 
among cyanobacteria (Kenyon et al. 1972; Cohenet et al. 1995). The strain studied 
Nostoc sp. MI-C84-a belongs to the first group, which is characterized by a high 
content of saturated and monounsaturated FAs: 16:1n-7, 18:1n-9. The peculiarity 
of the profile of Nostoc sp. MI-C84-a has the highest content of 18:0 compared to 
other species of this genus, which is dominated by 16:0 among SFA (Gugger et al. 
2002; Temina et al. 2007; Tiwari and Sharma 2021). The content of cyanobacterial 
specific 16:1n-7, 18:1n-9 in the studied strain is lower than what is known, for ex-
ample, for marine Nostoc calcicola Brébisson ex Bornet et Flahault and Nostoc com-
mune Vaucher ex Bornet et Flahault with values of 7.05%, 28.29% and 13.5%, 4.1%, 
respectively. At the same time, many freshwater Nostoc strains do not show FAs such 
as 16:1n-7 and 18:1n-9 in their FA profile (Temina et al. 2007). Higher content of 
18:3n-6 has been identified as another freshwater Cyanophyceae compared to ma-
rine ones (Cañavate 2018). The new strain is superior to the known Nostoc in total 
SFA content. The predominance of FAs with 16 and 18 carbon atoms in the profile 
is considered a common feature of a large phylogenetic group of green microalgae. 
At the class level, the predominance of 16:2 for Trebouxiophyceae was registered, 
while 16:3 and 16:4 were observed in Chlorophyceae and Chlorodendrophyceae. 
These classes are also characterized by 18:1n-9, 18:2n-6, 18:n-3, and 22:6n-3 (do-
cosahexaenoic acid (DHA)) (Jónasdóttir 2019). In general, the profile of the green 
microalgae studied in this work is characterized by the predominance of FA with 16 
and 18 carbon atoms, except Tetraselmis contracta MI-Ch6-a, which also presents 
FA with 20 and 22 carbon atoms.

The profile of Chlorococcum oleofaciens MZ-Ch4 is characterized by a high 
amount of SFA (54.68%), which distinguishes it from another strain of Chlorococ-
cum oleofaciens SAG 213-11 containing 26.28% SFA (Del Río et al., 2017), as well as 
from Chlorococcum amblystomatis (F.D.Lambert ex N.Wille) N.Correia, J.Varela et 
Leonel Pereira containing 38.9% SFA (Cordeiro et al. 2017). The closest SFA content 
to our data was observed in Chlorococcum infusionum (Schrank) Meneghini SAG 
10.86 with 45.6% (Lang et al. 2011). A specific feature of the new strain of Chlorococ-
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cum oleofaciens MZ-Ch4 was the high content of ALA (18:3n-3) – 8.68%. Previous-
ly, the ALA content of 5.45% was reported for Chlorococcum oleofaciens SAG 213-11 
and 3.2% for Chlorococcum amblystomatis (Del Río et al. 2017; Cordeiro et al. 2017).

In this study, the marine strain Chlorella vulgaris MI-Ch19-a differed signifi-
cantly from freshwater MI-Ch7-a in SFA and PUFA content. High content of pal-
mitic and stearic acids (up to 57.8% or higher) in marine Chlorella sp. and Chlorella 
vulgaris was also observed in previous reports (Amaral et al. 2015; Kurnia et al. 
2017). However, other studies reported that marine Chlorella vulgaris had lower 
amounts of SFA than in our study, varying from 21.35% to 34.9% (Pratoomyot et al. 
2005; Petkov and Garcia 2007). The FA content of the n-3 PUFA was higher in the 
studied freshwater strain Chlorella vulgaris MI-Ch7-a than in the marine strain and 
reached 22.58%. As reported by Freitas (2017) in Chlorella Beyerinck [Beijerinck] 
cells, n-3 PUFAs and n-6 PUFAs can account for up to 35–40% of total lipid content. 
This accounts for the high value of Chlorella species as sources of such FAs and pri-
marily linoleic acid and α-linolenic acid. The content of these FAs in some strains 
of Chlorella vulgaris can reach 24% and 27% (Petkov and Garcia 2007). For the 
freshwater strain in our studies, the content of LA and ALA was also high, 20.41% 
and 18.04%, respectively.

In terms of FA composition, Tetraselmis contracta MI-Ch6-a is comparable to 
previous reports but is characterized by a higher PUFA content than Tetraselmis 
suecica (Kylin) Butcher, Tetraselmis sp. in which this index was 17.2% and 33.51%, 
respectively (Pratoomyot et al. 2005; Jiménez-Valera et al. 2016). In our studies, no 
predominance of palmitic acid (16:0) was observed, which accumulated at 54.49% 
in the Tetraselmis sp. strain from Indonesia (Widianingsih et al. 2013) and 30.3% 
in the strain of Tetraselmis suecica from Mexico (Jiménez-Valera et al. 2016). The 
composition of PUFA was dominated by ALA and lacked DHA, which was also 
observed for Tetraselmis sp. (Pratoomyot et al. 2005). In general, this strain of Tet-
raselmis contracta MI-Ch6-a contained the highest amount of PUFAs among the 
green microalgae studied, especially n-3 PUFAs, which is important from the per-
spective of microalgae utilization technologies to correct the disturbed omega-3: 
omega-6 balance in diets through its inclusion in food and feed additives (Simo-
poulos 2016).

Diatoms are believed to be dominated by FAs with 16 carbon atoms and espe-
cially 16:1n-7 is formed in large quantities (Jónasdóttir 2019). In Bacillariophyceae 
in this study, 16:0, 16:1n-7, and 20:5n-3 were the main FAs. The content of 16:1n-7 
ranged from 17.05% to 32.55%. SFAs represented about all FAs in Tabularia tabula-
ta MI-B38 and Navicula cryptocephala MI-B42, while PUFAs dominated in Thalas-
siosira eccentrica MI-B53 and Cyclotella atomus MI-B47. 

Thalassiosira eccentrica MI-B53 and Cyclotella atomus MI-B47 had the highest 
amount of EPA (20:5n-3), which was higher than previously reported for Thalas-
siosira sp. (Pratoomyot et al. 2005), Stephanocyclus cryptica (Reimann, Levin et 
Guillard) Kulikovskiy, Genkal et Kociolek (Pahl et al. 2010). The amount of DHA 
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(22:6n-3) in Thalassiosira eccentrica MI-B53 was higher than previously reported 
for different strains of Thalassiosira sp. (Pratoomyot et al. 2005; Widianingsih et al. 
2013). A feature of the FA profile of Tabularia tabulata MI-B38 was the high ARA 
content, higher than that of the strains studied in this study, as well as Stephanocy-
clus cryptica (Pahl et al. 2010), Thalassiosira sp., Nitzschia cf. ovalis (Pratoomyot et 
al. 2005).

The marine strain Navicula cryptocephala MI-B42 contained more palmitic acid 
(16:0) in our studies than the freshwater Navicula cryptocephala 33.9% (Sanjay et al. 
2013). The FA amount of 16:1n-7 in the studied strain was higher than the freshwa-
ter strain containing 10.92% (Sanjay et al. 2013) and was close to marine strains of 
Navicula sp. (Jiménez-Valera et al. 2016). Our results are in agreement with a previ-
ous finding that freshwater Bacillariophyceae accumulate more 16:1n-7 compared 
to marine Bacillariophyceae (Cañavate 2018). Diatom strains and Hemiselmis sp. 
MI-C58 showed the highest number of FA with a chain with more than 18 carbon 
atoms in the profile, which is consistent with the pattern described previously for 
Bacillariophyceae and Cryptophyceae (Taipale et al. 2013; Jónasdóttir 2019). Cryp-
tophyceae species are also known to have a high PUFA content (Peltomaa et al. 
2017). The strain Hemiselmis sp. MI-C58 was characterized by a maximum PUFA 
content of 60.4% among those studied, among which n-6 PUFAs formed the basis. 
SDA (28.1%), EPA (15.52%), and ALA (12.48%) occupied the leading positions in 
terms of quantity. The n-6 PUFAs were only represented by LA with 4.26%. These 
characteristics are important in determining the directions of practical use in the 
future of the strains studied.

Overall, our study provides valuable insights into the FA composition of vari-
ous microalgae strains, highlighting their potential for biotechnological applica-
tions, such as biofuel production, aquaculture feed, and pharmaceuticals. Further 
research into the lipid metabolism and genetic factors influencing FA composition 
in microalgae could lead to the development of tailored cultivation strategies for 
optimizing desired FA profiles.

Conclusion

The composition of the main groups and individual Fatty Acids (FAs) is reliant not 
only on their specific phylogenetic (taxonomic) group affiliation but also on their 
habitat or cultivation conditions. This suggests that variations in FA composition 
could represent an adaptive mechanism that enables algae to survive under different 
circumstances. Furthermore, n-6 Polyunsaturated Fatty Acids (PUFAs) are likely to 
have a significant function in this adaptation process.

Future research should aim to further clarify the relationship between the FA 
profile and phylogeny and consider the impact of environmental aspects. This will 
enable the creation of robust algorithms for evaluating the trophic value of differ-
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ent phytoplankton groups. Additionally, it will guide bioprospecting strategies for 
finding biotechnologically valuable species and strains of microalgae. Such studies 
hold immense potential for expanding our understanding of diverse phytoplankton 
groups and fostering biotechnological advancements through algae.
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