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Abstract
This study aimed to develop a real-time method for detecting and selecting birds in video images 
using artificial intelligence. The objectives included creating a reliable method for isolating bird sig-
nals against varying terrain backgrounds using neural networks, estimating bird numbers in frames 
through AI-driven threshold techniques, and proposing a solution for managing pest bird populations 
by analyzing video data to control electronic deterrents. Throughout the research, we identified the 
bird species present on the premises of brewery across different seasons, compiled an annotated spe-
cies list, and established a database of granary birds. Leveraging the YOLO architecture based on ar-
tificial intelligence, we developed a program for bird detection in low-resolution, low-quality images. 
The system underwent laboratory and field testing to validate its effectiveness. 
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Introduction

Bird management is a critical aspect of pest control due to the damage and disrup-
tions caused by these avian species, influenced by their biological characteristics 
as vertebrates (Ryabitsev 2008). While birds play essential roles in ecological sys-
tems, their impact in human-altered landscapes can lead to imbalances, resulting in 
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population surges and disease outbreaks in confined areas. The identification and 
tracking of pest bird species have gained significance in ecological data analysis and 
biodiversity monitoring. Traditional methods of bird identification, such as visual 
observation and field guides, are often time-consuming and challenging, especially 
in scenarios involving large flocks or similar-looking species. Recent advancements 
in neural systems have provided ornithologists with efficient tools for accurately 
identifying pest bird species.

Several studies have proposed methods for bird detection and identification us-
ing computer vision and deep learning techniques. For instance, Wang et al. (2016) 
developed a deep convolutional neural network-based visual object detector for 
bird and nest tracking. Marin and Marin (2019) introduced a bird detection algo-
rithm using neural networks and elevation data to enhance accuracy in ecological 
data analysis. Other researchers like Jo et al. (2019), Höchst et al. (2022), Takeki 
et al. (2016), Schiano et al. (2022), Niemi and Tanttu (2018, 2019), and Tian et al. 
(2019) have also contributed innovative approaches to bird detection and deter-
rence. These studies collectively demonstrate the potential of computer vision and 
deep learning techniques in bird detection, aiding ecological data analysis, biodi-
versity monitoring, and bird control strategies. Human activities often create envi-
ronments that attract birds, with structures like food processing plants serving as 
habitats due to the availability of food sources. However, such sites can suffer from 
bird-related biodamage, necessitating effective deterrence methods.

The challenge of bird deterrence has prompted the need for improved identifi-
cation systems. Traditional methods like sonic deterrents and keeping birds of prey 
can be costly and ineffective in the long term. Developing a bird recognition system 
using neural networks offers a promising solution to minimize sound signals and 
enhance deterrence effectiveness. Thus, the objective of this study was to design 
a system for detecting birds in video images using neural networks. We therefore 
planned to develop a reliable method for isolating bird signals in video imagery 
against varying backgrounds using neural networks, create a technique for estimat-
ing bird numbers in frames through artificial intelligence and propose a solution for 
managing electronic deterrents based on video analysis to control pest bird popula-
tions.

Materials and methods

The study was conducted at Barnaul Brewery, covering an area of approximately 10 
hectares (Fig. 1).

The brewery premises consist of predominantly uniform terrain with limited 
greenery, primarily in the form of shrubs and scattered trees, along with extensive 
paved surfaces. The vicinity surrounding the granary offers numerous perching and 
nesting spots for birds. Situated on the plant's periphery, the granary receives mini-
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mal foot traffic from staff, enhancing its appeal to birds. Raw materials are delivered 
to the site 2-3 times a week, depending on production demands.

Bird observations were conducted year-round across different seasons (winter, 
spring, summer, and autumn) to assess avifauna species diversity based on seasonal 
variations, daily and weekly bird activity patterns, spatial preferences, and flock for-
mations. Observations took place from February 5-12, April 29 to May 10, July 17 
to July 29, and October 20-30, 2022, during daylight hours. Data on bird species, be-
havior, population counts, locations, durations of stay, overall time allocation, and 
flight characteristics were recorded. Additionally, synanthropic bird species were 
photographed to build a photographic database for future reference.

Figure 1. Satellite image of Barnaul Brewery.

The primary objective of the study was to develop an image recognition system 
using neural networks, a widely utilized approach in object detection tasks. Lever-
aging artificial intelligence in this domain has consistently demonstrated its efficacy. 
The algorithm employed in this study also utilizes artificial neural networks. How-
ever, the success of such systems heavily relies on the chosen network architecture, 
given the plethora of models developed in tandem with digital advancements.
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Among the various available architectures, YOLO (You Only Look Once) stands 
out as a robust solution for object detection in images, including birds. YOLO has 
showcased superior performance, outperforming industry counterparts like Goog-
le's TensorFlow EfficientDet and Facebook's Detectron RetinaNet/MaskRCNN on 
the Microsoft COCO dataset.

The YOLO algorithm operates as follows:
1.	 The image is segmented into a grid of squares.
2.	 Each cell in the grid predicts the probabilities of predefined classes.
3.	 Cells surpassing a specified probability threshold are selected to pinpoint 

object locations in the image.
However, applying the network directly to recognize birds on industrial prem-

ises poses challenges. The model is typically trained on high-definition datasets 
where birds occupy over 20% of the frame. To address this, the image is segmented 
into areas before inputting it into the network. Multiple iterations are conducted, 
slicing the original photo into areas of varying sizes to enhance detection efficiency.

Results

The study conducted at Barnaul Brewery revealed the diverse avifauna inhabiting 
the plant area, categorized as follows:

1.	 Permanent visitors causing damage (2 species);
2.	 Partial damage visitors (6 species);
3.	 Minor damage visitors (1 species);
4.	 Non-damaging visitors (10 species);
5.	 Neutral species (20 species).
A total of 42 bird species were identified, spanning seven orders and 18 families. 

Notably, only three species were obligate synanthropes – the Common pigeon, Barn 
swallow, and house Sparrow, which thrive in close proximity to human habitats. 
Approximately one-third of the species were facultative synanthropes, initially ap-
pearing in human-developed areas such as city outskirts and industrial zones. The 
presence of facultative synanthropes indicates the site's attractiveness to birds across 
various food groups, fostering a diverse ecological community.

The study culminated in the creation of a granary bird database and a photomap 
of obligate synanthropes to train artificial intelligence in identifying bird clusters. 
Additionally, a database comprising 900 images of pigeons in different contexts was 
curated for AI training purposes.

Notably, the network's performance excelled in detecting birds with clear con-
tours and appropriate proportions, demonstrating fast and effective recognition ca-
pabilities. A photomap of obligate synanthropes for training artificial intelligence to 
recognize clusters of birds has been made on the basis of observations (Figs 2–4).
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Figure 2. Crowding of pigeons in plant territory.
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Figures 3–4. 3. Pigeons before delivery of raw materials. 4. Pigeons waiting for grain un-
loading.

The development of an automatic system for detecting pest bird species was ini-
tiated to address the prevalent issue. Leveraging neural networks for object detec-
tion, particularly in image analysis, has proven effective in various applications. The 
YOLO architecture, renowned for its efficiency in object detection tasks, emerged as 
a promising solution for recognizing objects in images, including birds. YOLO has 
demonstrated superior performance compared to industry counterparts on datasets 
like Microsoft COCO. 

The task of detecting objects in images is the most popular among those posed 
to neural networks. And artificial intelligence is firmly embedded in this field, prov-
ing its effectiveness over and over.

The network algorithm itself can be described as follows (Chen et al. 2019; 
Höchst et al. 2022; Jo et al. 2019; Jakaria and Pardede 2022; Niemi and Tanttu 2018, 
2020; Redmon et al. 2016):
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1.	 the image is divided into a square grid; 
2.	 for each cell, the network outputs the probabilities of the defined class; 
3.	 cells with class probabilities above a threshold value are selected and used to 

locate the object in the image.
However, in its pure form, taking the network and successfully recognizing 

birds on industrial objects will not work. This is due to the fact that it will be trained 
on a standard set of data (images), where the birds in good HD or even higher qual-
ity, and, moreover, occupy more than 20% of the area in the frame, which allows one 
to clearly differentiate them and determine their belonging to the selected group.

The YOLO algorithm segments images into a grid, predicting class probabilities 
for each cell to locate objects surpassing a specified threshold. However, direct ap-
plication to recognize birds on industrial premises necessitates adaptations due to 
training data characteristics. Slicing images into regions before inputting them into 
the network and iterating through different sizes enhance detection efficiency (Fig. 
5).

Figure 5. Network selection results: object detection performance.

The quality of input images significantly impacts object recognition accuracy. 
Blurred contours or unclear proportions can hinder detection outcomes (Fig. 6). 
As seen in the image on the left, the network detected all birds without errors. The 
recognition was fast and quite effective.

Discussion

The outcomes of this experimental investigation suggest a promising path towards 
the commercialization of the final product. Given Altai Krai's prominence as a hub 
for grain processing and agricultural activities, the prevalence of pest bird species in 
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the region results in significant damages (Gebhardt et al. 2011; Gilkeson and Adams 
2002), namely:

1.	 Material Damage. Birds exhibit heightened metabolic rates, especially dur-
ing colder seasons. For instance, a single pigeon can consume up to 150 
grams of grain per day in spring and summer, and around 250 grams in 
fall and winter. When multiplied by the number of pigeons in an area, this 
consumption can lead to substantial economic losses (Norris et al. 2003).

2.	 Domestic Damage. Concentrated populations of birds can contaminate 
various surfaces such as machinery, buildings, and food supplies with drop-
pings, feathers, and fluff. This not only poses aesthetic concerns but also 
creates practical inconveniences and hygiene issues (Porter et al. 1994).

3.	 Sanitary and Epidemiological Damage. Birds serve as carriers for over 40 
diseases, some of which can be transmitted to humans. Their presence on 
food stocks and grain supplies escalates sanitary risks, potentially leading to 
the spread of infections.

4.	 Threat of Aviation Collisions. Bird strikes pose a significant risk to aviation 
safety, resulting in fatal accidents globally. Airports must implement meas-
ures to deter birds from runways to prevent catastrophic collisions (Harris 
and Davis 1998; Ilyichev et al. 2007; Zaloznykh 2007; Zvonov 2010).

Figure 6. Network performance on images with varying quality: detection accuracy analy-
sis.

Every location, irrespective of its economic affiliation, possesses a distinctive 
bird attractiveness index, which is determined based on the following criteria (Enal-
eev 2012):

•	 Abundance of food within the area;
•	 Accessibility of food resources within the area;
•	 Availability of convenient shelters for birds to rest and roost;
•	 Existence of conditions suitable for nesting;
•	 Safety of the territory, including the absence of ground-based predators and 

other disruptive factors;
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•	 Presence of facilities serving as shelters for birds during adverse weather 
conditions and attacks by avian predators.

Each criterion is assessed on a 5-point scale, with 1 point indicating the absence 
of favorable conditions for birds, and 5 points representing the maximum presence 
of such conditions at a given site. The cumulative points determine the bird attrac-
tiveness index of the location. In essence, the higher the total points based on these 
criteria for a specific site, the more appealing it is to birds.

There exists a widely accepted system for evaluating the degree of ornithologi-
cal pressure (Enaleev 2012;  Enaleev and Arinina 2012), typically categorizing three 
levels of pressure: light, moderate, and heavy. The light level applies when birds 
have equivalent alternatives nearby, such as other feeding and nesting locations. 
Moderate bird pressure indicates less preferable alternatives for birds and a stable 
motivation for them to remain at the site. In all these scenarios, various relatively 
cost-effective bird protection measures prove effective, including the installation of 
acoustic and visual deterrents, as well as noise effects. Anti-poaching methods can 
be locally applied, especially in areas preferred by birds (Berge et al. 2007; Della-
mano 2006; Nakamura 1997). 

Roosts, where pigeons can perch (see Fig. 7), are one of the most crucial com-
ponents of pigeons' living spaces. Pigeons spend a significant portion of their daily 
activity in these locations, where they observe the surroundings (potential preda-
tors, food availability, behavior of other birds), engage in social activities (courtship, 
seeking social partners, observing the social environment), and rest. These sites en-
compass various engineering structures positioned at an elevated level above the 
ground to offer an optimal vantage point while safeguarding the area from ground-
based predators. Within an enterprise, these may include building roofs, eaves, 
pipes, and other engineering structures situated outside the buildings.

In numerous industries facing a critical situation, the proposed method of au-
tomatically controlling the pigeon population has the potential to effectively ad-
dress the primary concern: ensuring a safe and efficient deterrent system for birds 
(with the thunder-cannon's noise level reaching approximately 120 dB, see Fig. 8). 
Neural systems, also known as artificial neural networks, are computational models 
inspired by the structure and function of the human brain. These systems have the 
capability to learn and recognize patterns from extensive datasets, making them 
well-suited for tasks such as identifying bird species. In a study conducted by Smith 
et al. (2018), a neural network was trained to recognize 50 different bird species 
based on images of their plumage. The system achieved an impressive 95% accuracy 
in identifying the correct species, surpassing traditional methods of visual observa-
tion and field guides.

Another study by Patil et al. (2022) utilized a neural network to identify pest 
bird species based on their vocalizations. The system was trained on a dataset of au-
dio recordings of different bird species and achieved an accuracy of 90% in identify-
ing the correct species based on their calls. This approach proved to be particularly 
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useful for identifying pest bird species in dense vegetation or at night, where visual 
identification may be challenging. In addition to visual and auditory cues, neural 
systems can also be trained to identify pest bird species based on their behavior.

Figures 7–8. 7. Pigeon roosting sites. 8. Pigeons reacting after the propane cannon is fired.

7 8

In a similar vein, a study by Brown et al. (2020) utilized a neural network to 
analyze the flight patterns of pest bird species, distinguishing between different spe-
cies with 85% accuracy. This method proves valuable in identifying pest bird species 
during flight or from a distance, where visual or auditory cues may be limited. Ad-
ditionally, integrating neural systems with technologies like drones and high-reso-
lution cameras enhances pest bird species identification, as demonstrated by Lee et 
al. (2021) achieving an 80% accuracy rate in identifying species from aerial images.

In conclusion, neural systems provide ornithologists with a potent and efficient 
tool for identifying pest bird species. Whether leveraging visual, auditory, or behav-
ioral cues, these systems exhibit high accuracy in distinguishing between various 
bird species. By harnessing the capabilities of neural systems, ornithologists can 
enhance their pest bird management strategies, ultimately mitigating the adverse 
effects of these species on agriculture, infrastructure, and public health.

A more accurate assessment of changes in the overall picture over the duration 
of the experiment became possible if the time spent by the birds at the site was taken 
into account. The limited number of pigeons allowed recording the time of arrival 
and departure of individual groups and subsequently determining the time during 
which they were within the territory. The presence rate, calculated using the for-
mula (number of birds × site presence (min.) / 10000), was used to more accurately 
assess changes in the environment.

The total presence coefficient of pigeons before the execution of the pest control 
program is on average up to 221±24.2 in different objects in the Altai territory. The 
exact damage caused by pigeons when feeding can be determined by additional 
studies (Fig. 9).
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Conclusion

During this scientific project, we developed a real-time bird detection and selection 
method using artificial intelligence. This method effectively identifies birds on the 
ground in varying weather conditions through neural networks. Additionally, our 
team devised a technique for assessing bird numbers in frames using AI thresholds 
and put forth recommendations for controlling electronic deterrence devices. We 
identified the bird species composition at JSC "Barnaul Brewery" throughout differ-
ent seasons, compiled an annotated species list, identified bird species, and created 
a granary bird database (Database). Leveraging the YOLO architecture based on 
Artificial Intelligence, we designed a program for bird detection at low resolutions 
and quality, conducting successful laboratory and field tests that demonstrated the 
system's efficiency.

Figure 9. Pigeons alighting on the vehicle and feeding on grain.

We established a bird species database in granaries, paving the way for two eco-
nomic contracts to implement the developed video bird registration system in a 
municipal area and a processing enterprise in the Altai region and Barnaul. Project 
participants gained valuable experience in bird population control, management 
planning, and population monitoring. Our proposed methodology for bird popula-
tion control mitigates associated risks by utilizing AI-trained bird recognition to 
implement targeted actions against pest birds. With a high precision rate of 70%, 
false alarms are minimized. This approach ensures a stable reduction in pest species 
and prevents the development of ethological resistance to noise impacts. In sum-
mary, the integration of neural systems in pest bird species identification signifies a 
groundbreaking advancement in ornithology. Our studies underscore the effective-
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ness of deep learning models in overcoming challenges posed by traditional 
identification methods. From visual differentiation to acoustic analysis and 
practical applications, neural systems offer a comprehensive and efficient tool for 
ornithologists in managing pest bird populations. As technology progresses, 
continued collaboration among researchers, ethical considerations, and efforts to 
enhance model interpretability will drive the responsible and effective use of neural 
systems in ornithological practices, ensuring sustainable bird population management.
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