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Abstract
Predatory insects play an important role in the regulation of arthropod’s numbers. When they coun-
teract with the diseased prey, the entomopathogenic microorganisms may be disseminated mechani-
cally or parasitize such secondary hosts. Microsporidia are wide-spread pathogens of insects with 
diverse host ranges, and infection of entomophagous hosts is not uncommon. In the present study, the 
spined soldier bug nymphs were fed with the adzuki bean borer larvae infected with Nosema pyrausta 
(A. Paillot) J. Weiser, 1961 or the silkworm larvae infected with N. bombycis Nägeli, 1857. Both patho-
gens were infective to the predator at the prevalence level of 15-30%. The former pathogen displayed 
a decrease of prevalence level in the filial generation to as low as 5 % and no infection in consequent 
generations. The latter could only be transmitted to bugs horizontally and no infections in the filial 
generation was found. This indicates low (or no) risk of vertical transmission of these two pathogens, 
making them suitable for combined application with the predatory bug in the integrated pest manage-
ment programmes.
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Introduction

Pest management is important for agriculture as well as human health (Kevan et al. 
2020). Extensive application of synthetic pesticides leads to environmental pollution 
and food contamination (Geiger et al. 2010; Tang et al. 2021; Dwivedi et al. 2022; de 
Azeredo Morgado et al. 2023), as well as the development of pest resistance which 
requires increased application rates, active compound rotation, novel delivery ap-
proaches etc. (Cross 2013; Biddinger et al. 2014; Godfray and Garnett 2014; Sparks 
and Nauen 2015; Kudsk et al. 2018; Möhring 2020). Even though modern chemical 
pest control means can be safe when all application regulations are respected (Dolz-
henko and Laptiev 2021), the insecticides might be applied under suboptimal con-
ditions. Examples of such situations include unsuitable abiotic factors (Amaraseka-
re and Edelson 2004; Sreelakshmi 2021) and inappropriate developmental stages 
of the pests (Vivan et al. 2017; Stejskal et al. 2021), forcing the farmers to increase 
dosage and frequency of insecticide application remarkably. For these reasons, al-
ternative means of pest control, including natural enemies, are of great importance. 
Entomopathogenic microorganisms are able to persist in pest populations, causing 
either acute infections that provide relatively quick death, or chronic diseases that 
affect the viability of pests with a transgenerational effect (Lewis et al. 2006; Solter 
et al. 2012; Litwin et al. 2020). Entomophagous arthropods are a significant com-
ponent of terrestrial ecosystems. The use of predatory insects of various orders as 
biological means of plant protection plays an important role regulating arthropod’s 
numbers (de Castro et al. 2015; Lin et al. 2021).

Predatory insects can act as mechanical carriers of insect pathogens. A lot of 
works is devoted to the study of the ability of predatory insects to spread nuclear 
polyhedrosis viruses through the excretion of infective particles with feces. Insect 
pests swallow occlusion bodies when eating infected plant parts. Predatory insects 
Hippodamia convergens Guérin-Méneville, 1842 (Pell and Vandenberg 2002), Orius 
laevigatus (Fieber, 1860) (Down et al. 2009), Oechalia schellenbergii (Guérin-Mé-
neville, 1831) (Cooper 1981), Podisus maculiventris (Say, 1832) (Biever et al. 1982; 
Abbas and Boucias 1984), P. nigrispinus (Dallas, 1851) (Carvalho et al. 2012), Eo-
canthecona furcellata (Wolff, 1811) (Gupta et al. 2013) are considered the most ef-
fective in the spread of entomopathogenic fungi, bacteria, and viruses.

Non-target predatory insect species are often used as a targeted spread of en-
tomopathogens directly in the phytophagous population – spread of the fungus 
Pandora neoaphidis (Remaud. & Hennebert) Humber, 1989 by the seven-spot-
ted ladybeetle Coccinella septempunctata Linnaeus, 1758 entomopathogenic for 
Acyrthosiphon pisum (Harris, 1776) and Sitobion avenae (Fabricius, 1775) (Roy et 
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al. 2001), distribution conidium Cordyceps fumosorosea (Wize) Kepler, B. Shrestha 
& Spatafora, 2017 by the ladybeetle H. convergens to control the Russian wheat 
aphid Diuraphis noxia (Mordvilko, 1913) (Pell and Vandenberg 2002), transfer of 
the entomopathogen Lecanicillium longisporum (Petch) Zare & Gams, 2001 from 
the common ant Lasius niger (Linnaeus, 1758) to rosy apple aphid Dysaphis plan-
taginea (Passerini, 1860) (Bird et al. 2004), the use of predatory insects Harmonia 
axyridis (Pallas, 1773) and Chrysoperla carnea (Stephens, 1836) in the distribution 
of Beauveria bassiana (Balsamo-Crivelli) Vuillemin s.l., 1912 to control green peach 
aphid Myzus persicae (Sulzer, 1776) (Zhu and Kim 2012).

However, the widespread use of entomopathogens complicates the system of 
interactions and leads to unpredictable effects that require special studies (Haddi et 
al. 2020; Mansour and Biondi 2021). The assessment of possible negative effects of 
entomopathogens on predators is of main importance in these studies, since their 
antagonism impairs the effectiveness of integrated plant protection (Sedaratian et 
al. 2014). From the predator's perspective, many pathogens and parasites reduce 
the energy value of prey, reducing predator survival and reproduction (Thieltges et 
al. 2013; Hatcher et al. 2014; Flick et al. 2016). So, the predatory bug P. nigrispinus 
unable to live more than three generations by consuming only virus-infected of 
the nuclear polyhedrosis virus (NPV) of the velvetbean caterpillar, Anticarsia gem-
matalis Hübner, 1818 (AgNPV) (de Nardo et al. 2001). Knowledge about the impact 
of various groups of entomopathogens on predatory insects needs to be expanded 
(Sedaratian-Jahromi 2021). 

The spined soldier bug P. maculiventris is used as an effective biological pest 
control agent. For example, P. maculiventris is effective against Leptinotarsa decem-
lineata (Say, 1824) (Hare 1990) and Pieris brassicae (Linnaeus, 1758) (Stamopoulos 
and Chloridis 1994; Aldrich and Cantelo 1999), Heliothis virescens Fabricius, 1777 
and H. zea (Boddie, 1850) (López et al. 1976), Spodoptera exigua (Hübner, 1808) 
(De Clercq and Degheele 1994), Pyrrhalta viburni (Paykull, 1799) (Desurmont and 
Weston 2008), and many others. So, in addition to direct predation, the P. macu-
liventris is also capable of spreading such entomopathogens as Lacanobia oleracea 
granulovirus (LoGV) and Microsporidium necatrix (J.P. Kramer) V. Sprague, 1977 
microsporidia, infecting Lacanobia oleracea (L., 1758) and S. littoralis (Boisduval, 
1833). However, the lifespan and egg production of P. maculiventris are significantly 
reduced after ingestion of caterpillars infected with the microsporidium М. necatrix 
(Down et al. 2004). When selecting infected B. bassiana compared to uninfected 
cutworm larvae S. frugiperda J.E. Smith, 1797 nymphs of predatory bugs more of-
ten chose uninfected individuals and avoided infection with an entomopathogen 
(Avery et al. 2022). However, P. maculiventris is not always effective and it is possi-
ble to consider methods of its effectiveness as a biological control agent (De Clercq 
2000).

Predatory insects, when spreading pathogens such as microsporidia in phy-
tophagous prey’s populations, contribute to the persistence of pathogens and further 
reduce the number of pests. The ability for many species of microsporidia to infect 
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insects of various families and orders is described (Tokarev et al. 2016; Malysh et al. 
2018). This is especially pronounced in close and constant contacts, which are ob-
served, in particular, in parasitic insects that infect Coleoptera (Saito and Bjørnson 
2013), Diptera (Futerman et al. 2006), Hymenoptera (Schuld 1999) and Lepidoptera 
(Simões 2015). Microsporidia spores are spread both from an infected host to a sus-
ceptible host, with faeces, through decomposing tissues, through cannibalistic feed-
ing (horizontal transmission) (Brooks 1988; Becnel and Andreadis 1999; Campbell 
et al. 2007; Saito and Bjørnson 2006; Goertz and Hoch 2008; Goertz and Hoch 2011; 
Wang-Peng et al. 2018) and from parental to filial generation (vertical transmission) 
(Becnel and Andreadis 1999; van Frankenhuyzen et al. 2007; Han and Watanabe 
1998; Grushevaya et al. 2021). So, Wang-Peng et al. (2018) found that healthy in-
dividuals of the migratory locust Locusta migratoria (Linnaeus, 1758) can become 
infected with Antonospora locustae (E.U. Canning) C.H. Slamovits, B.A.P. Williams 
& P.J. Keeling, 2004 microsporidia by eating food contaminated with the predatory 
insect’s feces. Moreover, microsporidia A. locustae is able to survive among migra-
tory locusts’ populations for several years. Predators of migratory locusts are able 
to acquire large numbers of spores while consuming the infected specimens. Marti 
& Hamm (1985) showed that spores of an unidentified Vairimorpha sp. remained 
intact in the intestines of the big-eyed bug Geocoris punctipes (Say, 1832) after in-
gesting infected tissues from S. frugiperda larvae. It has been determined that G. 
punctipes can be a potential vector for spreading pathogenic spores of Vairimorpha 
sp. Goertz and Hoch studied the influence of the forest caterpillar hunter Calosoma 
sycophanta (Linnaeus, 1758) on the interaction between its prey Lymantria dispar 
Linnaeus, 1758 and two microsporidia species Vairimorpha lymantriae (J. Weiser) 
Kunimi, 1993 and V. disparis Vávra J., Hyliš M., Vossbrinck C.R., Pilarska D.K., 
Linde A., Weiser J., McManus M.L., Hoch G. & Solter L.F., 2006 that infect the 
phytophagous insect. V. lymantriae and V. disparis spores were spread by preda-
tory insects by consuming the infected caterpillars. When spreading spores by C. 
sycophanta, 45% to 69% of the caterpillars tested were infected (Goertz and Hoch 
2013). Spores of microsporidia V. necatrix and Pleistophora sp. (extracted from S. 
frugiperda and the Pleistophora sp. from Dasychira basiflava Packard, 1864, respec-
tively) are able to remain infective after passing through the digestive tract of the 
bug Zelus exsanguis Stål, 1862. However, none of the tested bugs was infected with 
microsporidia (Kaya 1979).

The present work aimed to study the possibility of microsporidia commonly 
found in lepidopteran hosts to infect a predatory bug and to persist in a row of sub-
sequent generations under lab conditions. Our main hypothesis is that the broad 
host range of microsporidia of the genus Nosema allows for successful infection 
of a predator belonging to another insect order, such as the spined soldier bug P. 
maculiventris, feeding on heavily infected prey (horizontal transmission). Another 
question under investigation is whether this infection can persist through the gen-
erations of the new host (vertical transmission).
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Materials and methods

Insect cultures and their pathogens

The adzuki bean borer and Nosema pyrausta

Diapausing last instar larvae of the adzuki bean borer Ostrinia scapulalis (Walker, 
1859) were collected from the stalks of the common cocklebur of Xanthium stru-
marium L., 1753 in Slavyansky District of Krasnodar Area in April 2021 and were 
transported to St. Petersburg. The whole life cycle was maintained at +24 °C using a 
meridic diet for larval feeding (Frolov et al. 2019).

The culture of the adzuki bean borer was maintained in the same facility and 
manipulated by the same operator as the European corn borer O. nubilalis Hüb-
ner, 1796 culture. The latter originated from a field population described elsewhere 
(Grushevaya et al. 2021) which turned out to be naturally infected with the micro-
sporidium N. pyrausta (Paillot) Weiser, 1961. As a result, the O. scapulalis culture 
became occasionally contaminated with the microsporidium and the next genera-
tion of the insect was subsequently infected at the rate of about 30 %. Thus, the 
N. pyrausta-infected larvae were utilized for feeding and respective infection of P. 
maculiventris (see below).

The silkworm and Nosema bombycis

The silkworm eggs were acquired from the Stavropol sericulture station (Pyatig-
orsk) and propagated in the laboratory. The mulberry leaves grown at the facilities 
of All-Russian Institute of Plant Protection were used to feed the larvae Bombyx 
mori (Linnaeus, 1758). The N. bombycis Nägeli, 1857 spores were obtained from 
the Scientific Research Institute of Sericulture (Tashkent, Uzbekistan) and kept as a 
refrigerated water suspension for one month prior to the experiments. The experi-
mental infection was performed by feeding N. bombycis spores to the third instar 
B. mori larvae at the dosage of 104 spores/larva, spore suspension smeared against 
the mulberry leaflet fed to the insects. After complete consumption of the infective 
dosage, the larvae were maintained at the same conditions for three weeks, fed with 
fresh mulberry leaves. The presumably infected larvae, as well as the control ones, 
were exposed to P. maculiventris (see below).

The spined soldier bug

The spined soldier bug is maintained in a permanent laboratory culture at the fa-
cilities of All-Russian Institute of Plant Protection in a separate building where ex-
perimental handling of the pathogens is excluded. The last instar larvae and newly 
emerged pupae of the mealworm Tenebrio molitor Linnaeus, 1758 were used as the 
feed source for nymphs and adults (De Clercq et al. 1998).
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Experimental infection of the spined soldier bug

Horizontal transmission test

Either fifth instar larvae of O. scapulalis or third instar larvae of B. mori were placed 
individually in glass Petri dishes, 20 cm in diameter. As many as five one-day old 
feed-deprived second instar nymphs of P. maculiventris were placed per dish. The 
bugs attacked the larvae and collective feeding of nymphs was observed (Fig. 1). 
After 48 hours, the cadavers of prey larvae were removed for analysis (see below, 
section 2.3). A moistened piece of cotton and fresh feed insects as above were pro-
vided to the bugs for the rest of the experiment. The bugs were reared until molt-
ing to the adult stage and used for vertical transmission test (section 2.2.1). To test 
for horizontal transmission, presence of microsporidia was examined in larval and 
adult cadavers (section 2.3).

Vertical transmission test

After molting to adult, the pairs of bugs (one male and one female) obtained within 
each variant, referred to as parental generation (P₀), were placed into separate glass 
Petri dishes for mating and oviposition. For vertical transmission test, their off-
spring, referred to as filial generation (F₁) was routinely maintained in glass Petri 
dishes until the adult stage. Then the new adult bug pairs were formed to obtain the 
consequent second filial generation (F₂) in the variants where the microsporidian 
infection tended to persist. Those bugs initially reared on microsporidia-free larvae 
of both O. scapulalis and B. mori (in the assays using N. pyrausta and N. bombycis, 
respectively) were utilized as the control in the parental generation, as well as in 
consequent filial generations to ensure absence of cross-contamination during the 
whole experiment.

Diagnostics of microsporidia in insects 

Prior to the experiments, the specimens from the stock cultures of Lepidoptera and 
the spined soldier bug were checked using light microscopy to ensure they are free 
from the microsporidia infections. After the larvae of Lepidoptera were exposed for 
bug feeding, they were dissected and smears were prepared from the inner tissues. 
Similarly, the cadavers of the adult bugs were dissected for light microscopy. Smears 
of inner tissues were examined by bright field light microscopy using Carl Zeiss Axio 
10 Imager M1 at 400х magnification. The intensity of infection was estimated bas-
ing upon the number of spores per microscope field at 400× magnification, counted 
at 10 different spots of the smear: light (1-10 spores per field), mediocre (10–100 
spores) and heavy (over 100 spores). The remaining parts of microsporidia-positive 
specimens were frozen for consequent molecular detection.
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For genomic DNA extraction we used a simplified protocol of Sambrook et al. 
(1998) without addition of phenol. Insect tissues were homogenized with a plastic 
pestle in 1.5 mL microcentrifuge tubes in 100 μl lysis buffer CTAB. After homogeni-
zation, 500 μl lysis buffer with 0.2 % β-mercaptoethanol was added to the samples 
and incubated for 2 hrs at + 65°C. DNA was further extracted with chloroform and 
isoamyl alcohol (24:1), precipitated with isopropanol and washed with 70 % and 
90% ethanol. Dried DNA pellets were resuspended in 50 μl of ultra-purified water. 
The primers 18f/1047r specific to the locus of SSU rRNA were used to obtain frag-
ments ~900 bp. The PCR mix consisted of 4 µl of DNA, 5 µl of DreamTaq Green 
PCR Master Mix, and 0.5 µl of primers (forward and reverse). The PCR conditions: 
initial denaturation (95°C for 5 min), 35 amplification cycles (denaturation at 95°C 
for 1min; annealing at 54°C for 1 min, elongation at 72°C for 1 min) and a final ex-
tension step (72°C for 5 min). The amplicons were visualized using electrophoresis 
in 1 % agarose gels with GeneRuler Ladder Mix molecular weight marker (Thermo 
Fisher Scientific). The cut sections of the gel were melted in a 3 M solution of guani-
dine isothiocyanate, and the amplicons were purified by the silica sorption method 
(Vogelstein and Gillespie 1979).

The purified amplicons were sequenced in forward direction according to 
Sanger (Sanger et al. 1977) using an ABI Prism sequencer by Evrogen, Moscow, 
corrected manually in BioEdit and compared with Genbank entries using BLAST 
utility. Genbank (http://www.ncbi.nlm.nih.gov.nuccore/) was used to extract nu-
cleotide sequence data for SSU rRNA gene of N. bombycis and N. pyrausta. The 
nucleotide sequences were aligned in BioEdit (Hall 1999).

Figure 1. Collective feeding of Podisus maculiventris second instar larvae utilizing lepidop-
teran larvae: (A) fifth instar larva of Ostrinia scapulalis infected with Nosema pyrausta; (B) 
third instar larva of Bombyx mori infected with Nosema bombycis.

http://www.ncbi.nlm.nih.gov.nuccore/
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Statistical analysis

The exact Fisher test (Fisher 1992) to compare the infection prevalence levels be-
tween the variants. The main goal was to evaluate the differences between the vari-
ants of the parental bugs fed with the control and microsporidia-infected prey lar-
vae, as well as between the parental and the filial generations within each variant.

Results

Experiments with Nosema pyrausta

Cultivation of the microsporidia-free O. scapulalis culture in one facility with the 
temporary N. pyrausta-infected culture of O. nubilalis resulted in contamination of 
the healthy culture. Out of 34 O. scapulalis larvae assayed, 8 specimens turned out 
to be heavily infected with microsporidia spore masses, corresponding to the 23.5 ± 
7.3 % infection. When the infected insects were exposed to the groups of 5 second 
instar nymphs of P. maculiventris, they were eagerly attacked within the first 12 hrs 
and perished within 48 hrs since exposure. The groups of nymphs which fed on the 
infected adzuki bean borer larvae were chosen for further rearing until the adult 
stage. The 25 adult bugs that survived in the parental generation (P₀) were subjected 
to post-mortem analysis. Microsporidia spores of shape and size characteristic of 
N. pyrausta were observed in adipose tissue and silk glands of 4 specimens, cor-
responding to 16.0 ± 7.3 % mean prevalence level. This value was significantly dif-
ferent from the uninfected control group, as inferrect from the results of the exact 
Fisher test (Table 1). To determine species allocation of the microsporidium ob-
served in the predator tissues, SSU rRNA gene fragment was sequenced, showing 
100 % identity to the homologous sequence of N. pyrausta available under Genbank 
accession # HM566196.

The intensity of infection was high, comparable to that of the primary insect 
host (Fig. 2). The progeny of these infected females was further reared as the first 
filial generation (F₁) using only microsporidia-free feed insects. Consequently, the 
second (F₂) and the third (F₃) filial generations were acquired. Among 116 F₁ bugs 
reared till adult stage, as many as 6 specimens were microsporidia-positive, showing 
multiple parasite spores in the smears prepared from the whole body homogenates 
or separate samples of fat body, muscles, Malpighian tubules and salivary glands. 
This corresponds to 5,17 ± 2,06 % prevalence level, which is about three times as 
low as in the parental generation, though these values are not significantly differ-
ent. The intensity of infection varied from mediocre to heavy. However, F₂ and F₃ 
bugs turned out to be uninfected. As for the control, no microsporidia infection was 
detected both in the parental generation (Table 1) and subsequent filial generations 
(not shown).
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Table 1. Prevalence levels of Nosema pyrausta in parental generation (P₀) of Podisus macu-
liventris primarily fed with the infected Ostrinia scapulalis larvae and their respective prog-
eny of first (F₁), second (F₂) and third (F₃) filial generations

Variants Infective dosage, 
spores/larva Generation Sample 

size, pcs

Samples identified as 
infected ± SE

Pcs %
Control – P₀ 75 0 0aA

Nosema pyrausta Spontaneous 
infection

P₀ 25 4 17.39 ± 7.90bB

F₁ 116 6 5.17 ± 2.06b

F₂ 43 0 0a

F₃ 42 0 0a

Figure 2. Spores of Nosema pyrausta on smears prepared from infected insect tissues: (A) 
Ostrinia scapulalis, magnification ×400, scale bar = 20 µm; (B) Ostrinia scapulalis, magnifi-
cation ×1000, scale bar = 10 µm; (C) Podisus maculiventris, magnification ×400, scale bar = 
20 µm; (D) Podisus maculiventris, magnification×1000, scale bar = 10 µm.
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Experiments with Nosema bombycis

Out of 10 silkworm larvae fed with N. bombycis at the dosage of 104 spores/larva, 
only one turned out to be free from the infection. The other nine specimens had 
their inner tissues heavily loaded with the spores. Only those bugs fed with the in-
fected larvae were considered for the experiment. Among those 43 bugs reared till 
adulthood, there were 12 specimens showing microsporidian spores (Fig. 3) with 
light to heavy infection intensity, thus constituting 27,91 ± 6,84 % prevalence level, 
statistically significant as compared to the control. However, among 83 bugs of the 
filial generation, none was infected.

Similarly, all the 15 silkworm larvae fed with N. bombycis at the dosage of 104 
spores/larva became infected and among 73 P₀ bugs, the infection with mediocre 
to heavy intensity was found in 12 bugs, i.e. 15,07 ± 4,19 %, again significantly dif-
ferent from the control. Just like in case of N. pyrausta, the infected tissues were the 
adipose tissue and salivary glands. Their filial generation was also not infected, just 
like the control (Table 2). Sequencing the diagnostic fragment of SSU rRNA gene in 
microsporidia-positive bugs showed 100 % identity with the homologous sequence 
of N. bombycis (#D85503).

Figure 3. Spores of Nosema bombycis on smears prepared from infected insect tissues: 
(A) Bombyx mori, magnification ×400, scale bar = 20 µm; (B) Bombyx mori, magnification 
×1000, scale bar = 10 µm; (C) Podisus maculiventris, magnification ×400, scale bar = 20 µm; 
(D) Podisus maculiventris, magnification ×1000, scale bar = 10 µm.
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Discussion

Many species of microsporidia are highly contagious to their insect hosts and cause 
intensive infections both in nature and during artificial cultivation under condi-
tions of laboratory and industrial rearing (van Frankenhuyzen et al. 2004; Babin 
et al. 2022). N. pyrausta is not an exception. In field, the infection prevalence rates 
typically average at the level of 5-10 % in Europe (Malysh et al. 2011; Grushevaya 
et al. 2018) but is higher by an order of magnitude in North America (Lewis et al. 
2006). In the laboratory, experimental infection even with low dosages, such as 104 
spores/larva, results in infection levels exceeding 90 % in both type host (Grush-
evaya et al. 2020) and other vulnerable pyraloid moths, such as the beet webworm 
Loxostege sticticalis Linnaeus, 1761 (Malysh et al. 2018).

The same applies to N. bombycis, which is widespread in nature, infecting wild 
populations of various butterfly species (Tokarev et al. 2020), not to mention of 
extensive epizootics occurring in captive industrial cultures of the main host B. 
mori (Chakrabarty et al. 2013). It is therefore expected that predatory insects may 
encounter high loads of microsporidian spores while feeding on lepidopteran lar-
vae. Infections of entomophagous insects with the host-derived microsporidia have 
been documented repeatedly (see Introduction).

The dosages of N. bombycis spores utilized for experimental infection of silk-
worm larvae are variable. In the study of transovarial transmission of N. bombycis, 
50 third instar larvae were fed a diet containing 1.8×104 spores/cm3 and only 19 
specimens survived to moth stage with 15 % infection level, while higher dosages 
caused negligible or zero moth survival (Han and Watanabe 1998). In the studies 
of the effects of gut commensal bacteria supplementation on larval susceptibility to 
the microsporidium, the dosages used ranged between 25 and 2.5×107 spores per 
larva (Suraporn and Terenius 2021; Zhang et al. 2022). Similarly, to study the mid-
gut response of silkworm larvae to infection at the level of differentially expressed 

Table 2. Prevalence levels of Nosema bombycis in parental generation (P₀) of Podisus macu-
liventris primarily fed with the infected Ostrinia nubilalis larvae and their respective progeny 
of first (F₁), second (F₂) and third (F₃) filial generations

Variants Infective dosage, 
spores/larva Generation Sample 

size, pcs

Samples identified as 
infected ± SE

Pcs %
Control – P₀ 75 0 0A

Nosema bombycis 104 P₀ 43 12 27.91 ± 6.84B

F₁ 84 0 0A

105 P₀ 73 11 15.07 ± 4.19B

F₁ 175 0 0A
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genes, the dosages of 2×103 (Li et al. 2018) and 2×104 spores/larva (Ma et al. 2013) 
were applied. Thus, the parasite load exploited in the present work is in the range 
of dosages routinely applied in experimental studies to induce massive infection of 
inner tissues of the host. 

To our mind, the exposure of the heavily infected phytophagous insects to the 
predator is an appropriate model of possible natural interactions to test susceptibil-
ity of the predator to microsporidia in their prey at the maximally available level. It 
perfectly shows that even high loads of the pathogens are not causing epizootics in 
the predator under conditions of artificial rearing and same should be expected in 
nature. 

Interestingly, even though N. bombycis and N. pyrausta display different host 
ranges when assayed against a series of lepidopteran species (Tokarev et al. 2020), 
both were able to infect the spined soldier bug at similar levels via the horizon-
tal transmission route. This serves as another example of host switching of micro-
sporidia (Malysh et al. 2018; Saito and Bjørnson 2013; Futerman et al. 2006; Schuld 
1999), explaining the broad distribution of these parasites in insects and other in-
vertebrate, as well as vertebrate hosts.

Infection of entomophagous arthropods can be beneficial for the pathogen dis-
semination in the primary phytophagous insect host populations and transmission 
to the new pest species, but possible adverse effects cannot be ruled out when inten-
sive infections are developed in the predatory and parasitic insects.

In another study, N. pyrausta did not affect the fertility and lifespan of the com-
mon green lacewing C. carnea. Throughout the development of this host, swallowed 
spores remained in the intestinal lumen of the predatory insect and were excreted 
with feces. As a result, these spores did not infect the predator’s tissues, but remained 
infective for the corn borer larvae (Sajap and Lewis 1989). Similarly, other species of 
microsporidia from phytophagous prey did not adversely affect predatory insects, 
as the infection of their inner tissues was not established (Kaya 1979; Smirnoff and 
Eichhorn 1970; Young and Hamm 1985). The predators therefore only participated 
in spreading of the entomopathogens through defecation (Cooper 1981; Kaya 1979; 
Young and Hamm 1985; Capinera and Barbosa 1975). Interestingly, similar obser-
vations were made when an insect microsporidium N. ceranae Fries I., Feng F., da 
Silva A., Slemenda S.B. & Pieniazek N.J., 1996 was exposed to an insectivorous ver-
tebrate, the bee eater Merops apiaster Linnaeus, 1758. The feces of this bird, which 
feeds on honey bees, contained spores of the microsporidium originating from, and 
retaining infectivity to, this insect host (Valera et al. 2011). Participation of the Lepi-
doptera-associated microsporidia in natural trophic webs and their virulence to the 
predators under the conditions of horizontal and vertical transmission is of great 
importance both for ecosystem balance and application of biocontrol agents. In the 
present study, horizontal transmission was observed for the two microsporidia spe-
cies when the predator fed on prey intensively infected with the microparasites. The 
prevalence range of infections developed in the horizontally infected bugs was be-
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low 30 %. Presence of the spore masses in infected bugs suggests possibility of fur-
ther horizontal dissemination of the infection because cannibalism is widespread 
among the representatives of the genus Podisus (De Clercq and Degheele 1992). 
Yet, low levels of horizontally transmitted infection from the primary host to the 
predator suggests that further spreading within the predator’s populations will be 
even less intensive.

Another principal route of dissemination of microsporidia is via vertical trans-
mission from the parental generation to the filial one, ensuring and seasonal pro-
gress of infection (Zimmermann et al. 2016) and long-term persistence in popula-
tions of particular species over time (Siegel et al. 1988). In case of P. maculiventris, 
however, it can be concluded that the microsporidia from the lepidopteran insects 
are not well suited for efficient vertical transmission in the non-specific heteropter-
an host. This is well supported by the in diminishing prevalence rates of N. pyrausta 
in the row of consequent generations in the present study. Moreover, absence of N. 
bombycis infection in the filial generation of the bug ensures safety of this pathogen 
from the standpoint. This indicates low risk of vertical transmission of these two 
pathogens, making them suitable for combined application with the predatory bug 
in the biological and integrated pest management programmes.

Conclusion

It is vitally important to understand how biocontrol agents of different groups 
counteract when applied simultaneously. In the present study, two microsporidia 
from lepidopteran insects showed low levels of persistence in the predatory bug.  
N. pyrausta was able to infect the bug directly and their progeny at a diminishing 
rate. Meanwhile, N. bombycis could only infect the bug directly with no transmis-
sion to the progeny. Thus, these microsporidian species pose little risk to the spined 
soldier bug which is widely utilized for plant protection.
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