Thermophilic facultative anaerobic bacteria of the genus Geobacillus from bottom sediments of Lake Baikal

Main Article Content

T. A. Khanaeva
O. N. Pavlova
S. M. Chernitsyna
I. A. Khalzov
A. V. Khabuev
A. A. Nikonova
A. S. Novikova
T. I. Zemskaya

Abstract

Pure culture of thermophilic facultative anaerobic microorganism was isolated from surface sediment of methane seepage Posolsk Bank. New strain Geobacillus sp. PB15/Grf7geo does not differ from the typical strains by morphological and physiological-biochemical properties. It is able to withstand of wide temperature range with optimum growth between 55–60 °C. Chemoorganotroph. Phylogenetic analysis of the 16S rRNA sequence of the strain showed 97 % identity to cultivated strains of this genus. The strain forms a common clade with uncultivated representatives and does not cluster with sequences of cultivated strains within the genus Geobacillus in the phylogenetic tree. Strain Geobacillus sp. PB15/Grf7geo has been deposited to the collection of the VKM (=VKM B–3150T).

Downloads

Download data is not yet available.
DOI:https://doi.org/10.14258/abs.v3i3.3614

Article Details

How to Cite
Khanaeva, T. A., Pavlova, O. N., Chernitsyna, S. M., Khalzov, I. A., Khabuev, A. V., Nikonova, A. A., Novikova, A. S., & Zemskaya, T. I. (2017). Thermophilic facultative anaerobic bacteria of the genus Geobacillus from bottom sediments of Lake Baikal. Acta Biologica Sibirica, 3(3), 39-46. https://doi.org/10.14258/abs.v3i3.3614
Section
Articles

References

Andersson, M., Laukkanen, M., Nurmiaho-Lassila, E.-L., Rainey, F.A., Niemelä, S.I., Salkinoja-Salonen, M. (1995). Bacillus thermosphaericus sp. nov., a new thermophilic ureolytic bacillus isolated from air. Systematic and Applied Microbiology, 18(2), 203–220.

Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Lebedinsky, A.V., Chernyh, N.A., Nazina, T.N., Ivoilov, V.S., Belyaev, S.S., Boulygina, E.S., Lysov Y.P., Perov, A.N., Mirzabekov, A.D., Hippe, H., Strackebrandt, E., L’Haridon, S., Jeanthon, C. (2003). Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Applied and Environmental Microbiology, 69, 6143–6151.

Bonch-Osmolovskaya, E.A. (2005). Phylogenetic and metabolic diversity of thermophilic prokaryotes with different types of anaerobic respiration. Microbial diversity: current perspectives and potential application. New Delhi: International Publishing House.

Brock, T.D. (1978). Thermophilic microoganisms and life at high temperatures. US: Springer-Verlag.

Brosius, J., Ullrich, A., Paker, M.A., Gray, A., Dull, T.J., Gutell, R.R., Noller, H.F. (1981). Construction and fine mapping for recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid, 6, 112–118.

Budnikov, G.K. (2010). Himicheskij analiz v medicinskoj diagnostike. Moscow: Nauka. (in Russian)

Chernitsyna, S.M., Mamaeva, E.V., Lomakina, A.V., Pogodaeva T.V., Galach’yants Yu.P., Bukin S.V., Pimenov N.V., Khlystov O.M., Zemskaya, T.I. (2016). Phylogenetic diversity of microbial communities of the Posolsk Bank bottom sediments, Lake Baikal. Microbiology, 85(6), 672–680.

Coorevits, A., Dinsdale, A.E., Halke,t G., Lebbe, L., De Vos, P., Van Landschoo,t A., Logan, N.A. (2012). Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. International J. Systematic and Evolutionary Microbiology, 62, 1470–1485.

Denisova, L.Ya., Belkova, N.L., Tulokhonov, I.I., Zaichikov, E.F. (1999). Bacterial diversity at various depths in the southern part of Lake Baikal as revealed by 16S rDNA sequencing. Microbiology, 68(4), 457–483.

Dinsdale, A.E., Halket, G., Coorevits, A., Van Landschoot, A., Busse, H.J., De Vos, P., Logan, N.A. (2011). Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. International J. Systematic and Evolutionary Microbiology, 61, 1802–1810.

Frank, Y.A., Kadnikov, V.V., Gavrilov, S.N., Banks, D., Gerasimchuk, A.L, Podosokorskaya, O.A., Merkel, A.Y., Chernyh, N.A., Mardanov, A.V., Ravin, N.V., Karnachuk, O.V. Bonch-Osmolovskaya, E.A. (2016). Stable and variable parts of microbial community in siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study. Frontiers in Microbiology, 7, 2101. doi: 10.3389/fmicb.2016.02101.

Ghiorse, W.C., Wilson, J.T. (1988). Microbial ecology of the terrestrial subsurface. Advances in Applied Microbiology, 33, 107–173.

Heats, L.S., Sloan, G.L., Heath, H.E. (1986). A simple and generally applicable procedure for releasing DNA from bacterial cells. Applied and Environmental Microbiology, 51(5), 1138-1140.

Hungate, R.E. (1969). A roll tube method for the cultivation of strict anaerobes. Methods in Microbiology. US: Academic Press.

Jiménez, L. (1990). Molecular analysis of deep-subsurface Bacteria. Applied and Environmental Microbiology, 56, 2108–2113.

Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V., Shubenkova, O.V., Pogodaeva, T.V., Zemskaya, T.I. (2012). Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiology Ecology, 79, 348–358.

Kämpfer, P. (1994). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Systematic and Applied Microbiology, 17(1), 86–98.

Klerx, J., Zemskaya, T.I., Matveeva, T.V., Khlystov, O.M., Namsaraev, B.B., Dagurova, O.P., Golobokova, L.P., Vorob'eva, S.S., Pogodaeva, T.V., Granin, N.G., Kalmychkov, G.V., Ponomarchuk, V.A., Shoji, H., Mazurenko, L.L., Kaulio, V.V., Solov'ev, V.A., Grachev, M.A. 2003. Methane hydrates in the surface layer of deep water Lake Baikal sediments. Doklady Akademii Nauk, 393, 1342–1346. (In Russian)

Marmur, J. (1961). A procedure for the isolation DNA from microorganisms. J. Molecular Biology, 3, 208–218.

Logan, N.A., Berge, O., Bishop, A.H., Busse, H.-J., De Vos P., Fritze, D., Heyndrickx, M., Kämpfer, P., Rabinovitch, L., Salkinoja-Salonen, M.S., Seldin, L. Ventosa, A. (2009). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. International J. Systematic and Evolutionary Microbiology, 59, 2114–2121.

Namsaraev, B.B., Zemskaya, T.I. (2000). Microbial processes of carbon circulation in bottom sediments of Lake Baikal. Novosibirsk: Geo. (in Russian)

Naudts, L., Khlystov, O., Granin, N., Chensky, A., Poort, J., De Batist, M. (2012). Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal. Geo-Marine Letters, 32, 395–406.

Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S., & Ivanov, M.B. (2001). Taxonomic study of aerobic thermophilic bacilli: dDescriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the New combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology, 51, 433–446.

Owen, R.J., Hill, L.R., Lapage, S.P. (1969). Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers, 7, 503–516.

Rozanov, A.S., Ivanisenko, T.V., Bryanskaya, A.V., Shekhovtsov, S.V., Logacheva, M.D., Saik, O.V., Malup, T.K., Demenkov, P.S., Goryachkovskaya, T.N., Ivanisenko, V.A., Peltek, S.E. (2014). Bioinformatic analysis of the genome of the Geobacillus stearothermophilus 22 strain isolated from the Garga hot springs, Baikal region. Russian J. Genetics: Applied Research, 4, 267–272.

Sambrook, J., First, E.F., Maniatis, T. (1989). Molecular cloning. A laboratory manual. US: Cold Spring Harbor Laboratory Press.
Takai, K., Moser, D.P., DeFlaun, M., Onstott T.C., Fredrickson, J.K. (2001). Archaeal diversity in waters from deep South African gold mines. Applied and Environmental Microbiology, 67, 5750–5760.

Tourova, T.P., Sokolova, D.S., Semenova, E.M., Shumkova, E.S., Korshunova, A.V., Babich, T.L., Nazina, T.N., Poltaraus, A.B. (2016). Detection of n-alkane biodegradation genes alkB and ladA in the thermophilic hydrocarbon-oxidizing bacteria of the genera Aeribacillus and Geobacillus. Microbiology, 85(6), 693–707.

Widdel, F., Back, F. (1992). The Prokaryotes. Ecophysiology and Biogeochemistry. US: Springer.

Zakharova, Y.V., Sukhikh, A.S. (2015) Chromatographic analyses of membrane fatty acid Bifidobacterium with different
hydrophobicity. Sorbchionnye I chromatographicheskie processi, 15(6), 776–783. (in Russian)

Zemskaya, T., Lomakina, A., Mamaeva, E., Zakharenko, A., Pogodaeva, T., Petrova D. (2015). Bacterial communities in
sediments of Lake Baikal from areas with oil and gas discharge. Aquatic Microbial Ecology, 76, 95–109.