УДК 581.49

DOI: 10.14258/pbssm.2020107

Влияние типа полового размножения *Pinus sylvestris* L. на продуктивность потомства

The influence of the type of sexual reproduction of *Pinus sylvestris* L on the offspring productivity

Чеботько Н. К.

Chebotko N. K.

Казахский научно-исследовательский институт лесного хозяйства и агролесомелиорации, г. Щучинск, Казахстан. E-mail: chebotkon@mail.ru

Kazakh Research Institute of Forestry and Agroforestry, Schuchinsk, Kazakhstan

Реферам. В статье приведены результаты таксационных показателей *Pinus sylvestris* L. – высоты и диаметра ствола в возрасте 15 и 21 лет в потомстве от самоопыления клонов плюсовых деревьев и от тех же клонов свободного опыления. Определена продуктивность и устойчивость потомства от самоопыления в сравнении с потомством тех же клонов от свободного опыления.

Ключевые слова. Клон, потомство, сосна обыкновенная, самоопыление, свободное опыление.

Summary. The article presents the results of taxation indicators of *Pinus sylvestris* L. – the height and diameter of the trunk at the age of 15 and 21 years in the offspring from self-pollination of clones of plus trees and from the same clones of free pollination. The productivity and resistance of offspring from self-pollination was determined in comparison with the offspring of the same clones from free pollination.

Key words. Clone, offspring, Scots pine, self-pollination, free pollination.

Важную роль в выборе метода селекции у древесных пород, размножаемых половым путем, играет тип системы размножения. Опыты по самоопылению сосны обыкновенной (*Pinus sylvestris* L.), проведенные многими авторами, позволили установить широкий спектр полиморфизма по уровню самофертильности — от полной самостерильности до высокой самофертильности (Котелова, 1956; Кузнецова и др., 1993; Исаков, 1999; Чеботько, 2002).

Ранее в наших исследованиях по самоопылению клонов плюсовых деревьев были отмечены результаты, полученные на этапах от формирования семян от принудительного самоопыления и сравнении этих данных со свободным опылением и рост потомства в испытательных культурах, посаженных в 1997 г., в возрасте 4 и 6 лет (Чеботько, 2003). Принудительное самоопыление проводили на 53 клонах плюсовых деревьев, происхождение материнских деревьев этих клонов следующее: 16 плюсовых деревьев из Щучинско-Боровского биотопа; по 8 плюсовых деревьев из Воробьевского и Катаркольского биотопов; 13 – из Урумкайского I (сухие условия произрастания сосны) и 8 – Урумкайского II биотопов (влажные условия).

Эффект инбридинговой депрессии выражался в опаде завязи через месяц после опыления (10 %), образовании пустых семян (6 %), низкой всхожести и сохранности сеянцев (около 50 %) и еще ряде других неконтролируемых причин (Чеботько, 2003). Тип полового размножения клонов устанавливался по соотношению количества семян в одной шишке от самоопыления к количеству семян от свободного опыления. Было установлено, что количество полнозернистых семян в одной шишке от самоопыления в 3 раза ниже, чем от свободного опыления, в 2,5 раза меньше, чем от отдаленного внутривидового опыления и опыления смесью пыльцы. Масса 1000 штук семян при самоопылении выше, чем

от других методов опыления – на 3–22,8 %, при этом максимальная величина массы 1000 семян при самоопылении в 2 раза выше, чем при других методах опыления.

По полученным результатам были выделены три основные группы: самостерильные – сс, самофертильные – сф и частично-самофертильные – чсф. Приживаемость двухлетних сеянцев от самоопыления колебалась от 20 % до 30 %. Всего в культуры было высажено двухлетнее потомство 18 клонов плюсовых деревьев (представительство деревьев в каждом потомстве колеблется от 3 до 18 штук), у остальных клонов потомство не было получено по разным причинам.

Результаты показали, что самостерильные клоны составили 62,3 %, частично-самофертильные — 28,3 и самофертильные — 9,4 % от всех опыленных. Доля самостерильных форм превысила долю частично-самофертильных в 2,2 раза и долю самофертильных в 6,6 раза. Это подтверждает результаты, полученные другими авторами (Кузнецова, 1997).

В этой статье представлен анализ состояния и рост потомства по высоте и диметру ствола от самоопыления и свободного опыления клонов в тех же испытательных культурах в 15- и 21-летнем возрасте. В культурах 15-летнего возраста отмечена гибель потомства от самоопыления клонов 3.Боровского и 52.Урумкайского II биотопов (в четырех—шестилетнем возрасте у потомства от самоопыления этих клонов наблюдалась депрессия в росте). В 19-летних культурах потомство 16 самоопыленных клонов сохранилось, но наблюдалось уменьшение количества деревьев в трех семьях — по одному растению погибло в потомстве клонов 34.Урумкайского I биотопа и 44. Катаркольского, и два растения — 13.Боровского биотопов.

В таблице 1 показаны средняя высота и средний диаметр потомства 16 клонов от самоопыления и свободного опыления и устойчивость их к побеговьюну (*Evetria resinella* L.).

Отмечена стабилизация по высоте в потомстве от самоопыления и свободного опыления клонов в 15-летнем возрасте, что подтверждается коэффициентами вариации (C_v), которые находятся на очень низком (C_v = 3,3 %) и низком (C_v = 10,7 %) уровнях. По диаметру ствола нельзя сказать о стабилизации признака, изменчивость по диаметру ствола в 15 лет и 21 год колеблется от низкого (C_v = 6,9 %) до повышенного (C_v = 30,1 %) уровней.

Попарное сравнение потомства клонов от самоопыления и свободного опыления самостерильных форм показало, что у потомства от самоопыления клона 34. Урумкайского I биотопа наблюдается достоверное преимущество по высоте в 21-летнем возрасте на 0,01 % доверительном уровне – t_{φ} = 5,20 > $t_{23(0,01)}$ = 3,77 над потомством от свободного опыления, а в 15 лет такого преимущества не наблюдалось. У этого клона отмечено преимущество и по диаметру ствола в 15 – t_{φ} = 2,62 > $t_{23(0,5)}$ = 2,07 и 21-летнем возрасте – t_{φ} = 2,49 > $t_{23(0,5)}$ = 2,07, но на 0,5 % доверительном уровне. У потомства от самоопыления клона 36. Урумкайского I биотопа наблюдается достоверное преимущество по высоте в 15-летнем возрасте на 0,05 % доверительном уровне – t_{φ} = 3 ,46 > $t_{25(0,05)}$ = 3,08 над потомством от свободного опыления. У остальных потомств от самоопыления клонов самостерильных форм различий с потомством от свободного опыления не наблюдается, рост в высоту и в 15 лет, и 21 год приблизительно одинаковый. Отмечена депрессия в росте по диаметру ствола в 15 лет и 21 год у потомства от самоопыления клона 44. Катаркольского биотопа.

Анализ потомства клонов частично-самофертильных форм показал, что у клонов 13. и 15.Боровского биотопа отсутствует для сравнения потомство от свободного опыления. Сравнение потомства от самоопыления этих клонов с потомствами других клонов показало на их явную депрессию по высоте и диаметру ствола в 15 и 21 лет. Депрессия и по высоте, и диаметру ствола наблюдается у потомства от самоопыления клона 17.Боровского биотопа — $t_{\phi} = 3,54 > t_{34(0,02)} = 3,35$ в 15 лет. Потомство от самоопыления клона 21.Катаркольского биотопа ниже потомства от свободного опыления на 6–8 %, но это преимущество недостоверное.

Наименьшую группу составили самофертильные формы. Потомство самофертильной формы клона 74. Урумкайского II биотопа от самоопыления показывает явную депрессию по высоте и диаметру ствола. У потомства от самоопыления клона 49. Урумкайского II биотопа также наблюдается депрессия по высоте и диаметру ствола, но менее выраженная.

Дана оценка устойчивости анализируемым потомствам к повреждениям побегов побеговьюном. Повреждения, нанесенные побеговьюнами, отражаются на качестве ствола, ведут к его искривлению в разной степени. В наблюдениях за нанесенными повреждениями отмечается незначительный вред — повреждено в отдельных потомствах в среднем до 5–10 % побегов, что показало на снижение устойчивости до 4,0–4,5 баллов (максимальная устойчивость составляет 5,0 баллов). Больший вред был нанесен потомствам от самоопыления в группе частично-самофертильных форм 2.Боровского и 21.Катаркольского биотопов, оценка устойчивости составила 3,9 и 3,6 баллов соответственно. В этих потомствах больше растений было повреждено.

Таблица 1 Таксационные показатели потомств от самоопыления и сводного опыления клонов и оценка их устойчивости

Потомство клонов от самоо-	Диаметр ствола (см) в			Устойчи	
пыления (с.о.) и свободного	Высота (м) в возрасте, лет		возрасте, лет		вость к вредите-
опыления (св.о.) и их проис-		F			лям и болезням,
хождение (биотоп)	15	21	15	21	балл
Самостерильные (сс)					
$10.$ Боровской (с.о.) $7,0\pm0,15$ $10,5\pm0,18$ $10,1\pm0,52$ $14,3\pm0,90$ 4,0					
10.Боровской (св.о.)	$7,0 \pm 0,13$ $7,6 \pm 0,18$	$\frac{10,5 \pm 0,18}{10,5 \pm 0,19}$	$10,1 \pm 0,52$ $12,7 \pm 0,62$	17.6 ± 0.84	5,0
14.Боровской (с.о.)	7.0 ± 0.18 7.8 ± 0.09	$10,3 \pm 0,19$ $10,3 \pm 0,27$	$12,7 \pm 0,02$ $12,7 \pm 1,02$	17.0 ± 0.04 18.3 ± 1.15	4,4
14.Боровской (св.о.)	7.8 ± 0.09 7.7 ± 0.08	$\frac{10.3 \pm 0.27}{10.6 \pm 0.18}$	$12,7 \pm 1,02$ $12,7 \pm 0,66$	19.0 ± 0.62	4,4
34. Урумкайский I (с.о.)	7.4 ± 0.08	$11,2 \pm 0,11$	12.7 ± 0.36	$18,3 \pm 0,61$	4,3
34. Урумкайский I (св.о.)	$7,4 \pm 0,06$	10.3 ± 0.15	11.5 ± 0.31	$16,5 \pm 0,39$	4,1
35. Урумкайский I (с.о.)	7.8 ± 0.09	10.8 ± 0.21	11.5 ± 0.37	$17,1 \pm 0,48$	4,4
35. Урумкайский I (св.о.)	$7,6 \pm 0,07$	$10,6 \pm 0,13$	$11,4 \pm 0,36$	$16,9 \pm 0,38$	4,3
36.Урумкайский I (с.о.)	$7,8 \pm 0,12$	$10,0 \pm 0,35$	$13,9 \pm 0,65$	$19,2 \pm 0,66$	4,6
36. Урумкайский I (св.о.)	$7,2 \pm 0,17$	$9,9 \pm 0,18$	$13,1 \pm 0,39$	$19,4 \pm 0,49$	4,1
44. Катаркольский (с.о.)	$7,3 \pm 0,13$	$9,7 \pm 0,14$	$10,3 \pm 0,36$	$15,1 \pm 0,59$	4,3
44. Катаркольский (св.о.)	$7,5 \pm 0,06$	$10,3 \pm 0,12$	$12,2 \pm 0,21$	$17,3 \pm 0,31$	4,4
Частично-самофертильные (чсф)					
2.Боровской (с.о.)	$7,4 \pm 0,13$	$10,1 \pm 0,25$	$11,7 \pm 0,45$	$15,0 \pm 0,65$	3,9
2.Боровской (св.о.)	$7,6 \pm 0,12$	$10,5 \pm 0,16$	$11,3 \pm 0,41$	$16,8 \pm 0,58$	4,1
13.Боровской (с.о.)	$6,5 \pm 0,61$	$8,8 \pm 1,01$	$8,0 \pm 1,21$	$13,7 \pm 167$	4,0
15.Боровской (с.о.)	$5,7 \pm 0,44$	$9,0 \pm 0,29$	$7,4 \pm 0,79$	$12,0 \pm 1,16$	4,0
16.Боровской (с.о.)	$7,0 \pm 0,22$	$10,2 \pm 0,3$	$11,8 \pm 0,62$	$18,2 \pm 0,97$	4,4
16.Боровской (св.о.)	$6,6 \pm 0,10$	$10,4 \pm 0,15$	$9,8 \pm 042$	$13,6 \pm 0,53$	3,6
17.Боровской (с.о.)	$6,9 \pm 0,13$	$9,3 \pm 0,27$	$8,6 \pm 0,43$	$12,8 \pm 0,60$	4,1
17.Боровской (св.о.)	$7,4 \pm 0,12$	$10,3 \pm 0,14$	$11,3 \pm 0,34$	$16,3 \pm 0,51$	4,4
21.Катаркольский (с.о.)	$6,9 \pm 0,49$	$9,3 \pm 0,56$	$11,1 \pm 0,92$	$17,7 \pm 1,23$	3,6
21.Катаркольский (св.о.)	$7,3 \pm 0,21$	$10,1 \pm 0,37$	$13,2 \pm 1,20$	$18,2 \pm 0,83$	4,2
24.Катаркольский (с.о.)	$7,2 \pm 0,22$	$10,2 \pm 0,21$	$11,7 \pm 0,64$	$16,9 \pm 0,81$	4,2
24.Катаркольский (св.о.)	$7,3 \pm 0,09$	$10,2 \pm 0,12$	$11,6 \pm 0,25$	$16,1 \pm 042$	4,1
Самофертильные (сф)					
7.Боровской (с.о.)	$6,3 \pm 0,26$	$8,6 \pm 0,47$	$7,2 \pm 0,50$	$13,3 \pm 0,57$	4,4
49. Урумкайский II (с.о.)	$6,9 \pm 0,14$	$9,6 \pm 0,13$	$10,3 \pm 0,41$	$15,6 \pm 0,56$	4,2
49. Урумкайский II (св.о.)	$7,6 \pm 0,38$	$10,1 \pm 0,52$	$11,3 \pm 0,75$	$16,3 \pm 1,25$	4,5
74. Урумкайский II (с.о.)	$6,2 \pm 0,17$	$8,7 \pm 0,67$	6.8 ± 1.03	10.7 ± 1.45	4,0
74. Урумкайский II (св.о.)	$7,5 \pm 0,10$	$10,5 \pm 0,10$	$11,7 \pm 0,27$	$17,0 \pm 0,33$	4,4

Таким образом, полученные результаты свидетельствуют о незначительной взаимосвязи между уровнем самофертильности и ростом потомства в высоту и по диаметру ствола сосны обыкновенной. Почти во всех группах типов полового размножения сосны отмечается некоторая часть потомств с депрессией (28,5 %) или небольшим преимуществом (16,7 %) по высоте и диаметру ствола. Остальное

потомство клонов от самоопыления растет одинаково с потомством от свободного опыления. Однако окончательные выводы делать еще рано, требуется продолжение исследований и применение дополнительных статистических показателей в интерпретации полученных данных. Применение знаний уровня самофертильности необходимо при продолжении проведения внутри и межвидовых скрещиваний.

ЛИТЕРАТУРА

Исаков Ю. Н. Эколого-генетическая изменчивость и селекция сосны обыкновенной: Автореф. дис. . . . доктора биол. наук. – СПб., 1999. – 36 с.

Котелова Н. В. Влияние самоопыления и перекрестного опыления на качество семян и сеянцев сосны обыкновенной // Научно-техническая информация. - М., 1956. - № 20. - С. 1-74.

Кузнецова Н. Ф. Эмбриональный этап в генетической системе несовместимости сосны обыкновенной // Генетика на службе леса: Материалы Междунар. науч. -практ. конф. (28–29 июня 1996 г., г. Воронеж). – Воронеж, 1997. – С. 22–27.

Кузнецова Н. Ф., Машкина О. С., Исаков Ю. Н. Изменчивость потомств сосны обыкновенной в зависимости от уровня самофертильности, типа опыления и действия химических мутагенов // Генетические и экологические основы повышения продуктивности лесов. – Воронеж: НИИЛГиС, 1993. – С. 31–40.

Чеботько Н. К. Тип системы полового размножения сосны обыкновенной // Проблемы экологии АПК и охрана окружающей среды. Материалы 4-й Междунар. научн. конф. — Щучинск, 2002. — С. 185-187.

Чеботько Н. К. Внутривидовая гибридизация сосны обыкновенной и испытание гибридов в условиях Северного Казахстана: Автореф. дис. ... канд. сельскохоз. наук. – Алматы, 2003. – 21 с.