On the features of evolutionary process in plants: diploidization of the genomes and karyotypes

УДК 575.1/.8+577.2+58

  • A. V. Rodionov V L. Komarov Botanical Institute (BIN RAS); St. Petersbourg State University Email: avrodionov@mail.ru
Keywords: Comparative genomics, evolution of genomes, mesopolyploid, neopolyploid, paleopolyploid, polyploidy

Abstract

As estimated by karyosystematists, from 30 to 50 % of land plant species exhibit polyploid karyotypes, respectively, from 50 to 70 % of plants are diploids. One of the mechanisms of diploidization of a neopolyploid karyotype is chromosomal rearrangements leading to a change in the chromosome number in genomes - so-called dysploidy. In parallel with the processes of karyotype diploidization, contributing to it and supplementing it, there are processes of structural and epigenetic diploidization of the genome, the loss of part of the duplicated genes. It may be that the role of genome polyploidy in plant evolution lies primarily in the fact that this ephemeral state is primarily an effective way to destabilize the genome, a source of many new combinations of alleles that pass through a rigid selection sieve and are realized later at the secondary diploid stage. The transition from a polyploid to a diploid state is justified by the fact that neopolyploids cannot provide a high percentage of gametes carring balanced chromosome sets due to problems with chromosome pairing in meiosis I. The mechanisms of transition to strict pairwise chromosome pairing are such that automatically leads to diploidization of both the genome and the karyotype. It is also important that the diploid karyotype provides more stringent, faster, more efficient selection of adaptively important new combinations of alleles, thereby contributing to the accumulation of taxonomically significant traits, speciation, and, as a result, to progressive evolution.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ким Е. С., Большева Н.Л., Саматадзе Т. Е., Носов Н. Н., Носова И. В., Зеленин А. В., Пунина Е. О., Муравенко О. В., Родионов А. В. Уникальный геном двухромосомных злаков Zingeria и Colpodium, его происхождение и эволюция // Генетика, 2009. - Т. 45, №11. - С. 1506-1515.

Пробатова Н. С. Хромосомные числа в семействе Poaceae и их значение для систематики, филогении и фитогеографии (на примере злаков Дальнего Востока России) // Комаровские чтения. - Вып. 55. - Владивосток: Даль-наука, 2007.- С. 9-103.

Родионов А. В., Амосова А. В., Беляков Е. А., Журбенко П.М., Михайлова Ю. В., Пунина Е. О., Шнеер В. С., Лоскутов И. Г., Муравенко О. В. Генетические последствия межвидовой гибридизации, ее роль в видообразовании и фенотипическом разнообразии растений // Генетика, 2019. - Т. 55, № 3. - С. 255-272. DOI: 10.1134/ S0016675819030159

Родионов А. В., Носов Н. Н., Ким Е. С., Мачс Э. М., Пунина Е. О., Пробатова Н. С. Происхождение полиплоидных геномов мятликов (Poa L.) и феномен потока генов между Северной Пацификой и субантарктическими островами // Генетика, 2010. - Т. 46, № 12. - С. 1598-1608.

Родионов А. В., Шнеер В. С., Гнутиков А. А., Носов Н. Н., Пунина Е. О., Журбенко П. М., Лоскутов И. Г., Муравенко О. В. Диалектика видов: от исходного единообразия, через максимально возможное разнообразие к конечному единообразию // Бот. журн., 2020. - Т. 105, № 9. - С. 835-853. DOI: 10.31857/S0006813620070091

Barker M. S., Arrigo N., Baniaga A. E., Li Z., Levin D. A. On the relative abundance of autopolyploids and allopolyploids // New Phytologist, 2016. - Vol. 210. - P. 391-398. DOI: https://www.jstor.org/stable/newphytologist.210.2.391

Bayer P. E., Scheben A., Golicz A. A., Yuan Y., Faure S., Lee H., Chawla H. S., Anderson R., Bancroft I., Raman H. Lim Y. P. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids // Plant Biotechnology Journal, 2021. - Vol. 19. - P. 2488-2500. DOI: 10.1111/pbi.13674

Benton M. J., Wilf P., Sauquet H. The Angiosperm terrestrial revolution and the origins of modern biodiversity // New Phytologist, 2022. - Vol. 233. - P. 2017-2035. DOI: 10.1111/nph.17822

D’hont A., Denoeud F., Aury J.M., Baurens F. C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., Da Silva C. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants // Nature, 2012. - Vol. 488. - P. 213-217. DOI: 10.1038/nature11241

Darlington C. D. Recent Advances in Cytology. - Philadelphia: Blakiston, 1937. - 768 p.

Favarger C. Sur lemploi des nombres chromosomiques en geographie botanique historique // Ber. Geobot. Inst. Rubel., 1961. - T. 32. - S. 119-146.

Kotseruba V., GernandD., Meister A., Houben A. Uniparental loss of ribosomal DNA in the allotetraploid grass Zin-geria trichopoda (2n = 8) // Genome, 2003. - Vol. 46. - P. 156-163. D0I:10.1139/g02-104

Langham R. J., Walsh J., Dunn M., Ko C., Goff S. A., Freeling M. Genomic duplication, fractionation and the origin of regulatory novelty // Genetics, 2004. - Vol. 166. - P. 935-945. DOI: 10.1093/genetics/166.2.935

Li Z., McKibben M. T., Finch G. S., Blischak P. D., Sutherland B. L., Barker M. S. Patterns and processes of diploidization in land plants // Annual Review of Plant Biology, 2021. - Vol. 72. - P. 387-410. DOI: 10.1146/annurev-arplant-050718-100344

Liang Z., Schnable J. C. Functional divergence between subgenomes and gene pairs after whole genome duplications // Molecular Plant, 2018. - Vol. 11.- P. 388-397. DOI: 10.1016/j.molp.2017.12.010

Mandakova T., Joly S., Krzywinski M., Mummenhoff K., Lysak M. A. Fast diploidization in close mesopolyploid relatives of Arabidopsis // The Plant Cell, 2010. - Vol. 22. - P. 2277-2290. DOI: 10.1105/tpc.110.074526

Mandakova T., Lysak M. A. Post-polyploid diploidization and diversification through dysploid changes // Current Opinion in Plant Biology, 2018. - Vol. 42. - P. 55-65. DOI: 10.1016/j.pbi.2018.03.001

Mayrose I., Zhan S. H., Rothfels C. J., Arrigo N., Barker M. S., Rieseberg L. H., Otto S. P. Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014) // New Phytologist, 2015. - Vol. 206. -P. 27-35.

MtintzingA. The evolutionary significance of autopolyploidy // Hereditas, 1936. - Vol. 21. - P. 263-378.

Nakazato T., Barker M. S., Rieseberg L. H., Gastony G. J. Evolution of the nuclear genome of ferns and lycophytes // Ranker N. A., Haufler C. H. (eds.) Biology and Evolution of Ferns and Lycophytes. - Cambridge, UK: Cambridge Univ. Press, 2008.- P. 175-198.

Panchy N., Lehti-Shiu M., Shiu S. H. Evolution of gene duplication in plants // Plant Physiology, 2016. - Vol. 171 -P. 2294-2316. DOI: 10.1104/pp.16.00523

Sacerdot C., Louis A., Bon C., Berthelot C., Roest Crollius H. Chromosome evolution at the origin of the ancestral vertebrate genome // Genome Biology, 2018. - Vol. 19. - P. 1-15. - P. DOI: 10.1186/s13059-018-1559-1

Schubert I., Lysak M. A. Interpretation of karyotype evolution should consider chromosome structural constraints // Trends in Genetics, 2011. - Vol. 27. - P. 207-216. DOI: 10.1016/j.tig.2011.03.004

Soares N. R.; Mollinari M., Oliveira G. K.; Pereira G. S.; Vieira M. L. C. Meiosis in polyploids and implications for genetic mapping: A review // Genes, 2021. - Vol. 12. - 1517. DOI: 10.3390/genes12101517

Soltis D. E., Visger C. J., Soltis P. S. The polyploidy revolution then... and now: Stebbins revisited // American Journal of Botany, 2014. - Vol. 101. - P. 1057-1078. DOI: 10.3732/ajb.1400178

Stebbins G. L. Variation and Evolution in Plants. - New York: Columbia Univ. Press, 1950. - 623 p.

Szovenyi P., Gunadi A., Li F. W. Charting the genomic landscape of seed-free plants // Nature Plants, 2021. - Vol. 7. -P. 554-65.

Udall J. A., Long E., Ramaraj T., Conover J. L., Yuan D., Grover C. E., Gong L., Arick M. A., Masonbrink R. E., Peterson D. G., Wendel J. F. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants // Frontiers in Plant Science, 2019. - Vol. 10. - P. 1541. DOI: 10.3389/fpls.2019.01541

Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy // Nature Reviews Genetics, 2017. - Vol. 18. - P. 411-424. DOI: 10.1038/nrg.2017.26

Vanneste K., Baele G., Maere S., Van de Peer Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary // Genome Research, 2014. - Vol. 24. - P. 1334-1347. DOI: 10.1101/gr.168997.113

WangX., Morton J. A., Pellicer J., Leitch I. J., Leitch A. R. Genome downsizing after polyploidy: mechanisms, rates and selection pressures // The Plant Journal, 2021.- Vol. 107.- P. 1003-1015. DOI: 10.1111/tpj.15363

Wood T. E., Takebayashi N., Barker M. S., Mayrose I., Greenspoon P. B., RiesebergL. H. The frequency of polyploid speciation in vascular plants // Proceedings of the National Academy of Sciences, 2009. - Vol. 106. - P. 13875-13879. DOI: 10.1073/pnas.0811575106

Published
2022-11-17
How to Cite
Rodionov A. V. On the features of evolutionary process in plants: diploidization of the genomes and karyotypes // Проблемы ботаники Южной Сибири и Монголии, 2022. Vol. 21, № 2. P. 166-170 DOI: 10.14258/pbssm.2022076. URL: http://journal.asu.ru/bpssm/article/view/pbssm.2022076.