УДК 539.26:001.891.572: 541.64

СТРУКТУРНОЕ ИССЛЕДОВАНИЕ ПОРОШКОВОЙ ЛИГНОЦЕЛЛЮЛОЗЫ, СОДЕРЖАЩЕЙ СЕРЕБРО, МЕТОДОМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ АТОМНОЙ СТРУКТУРЫ

© Д.В. Громыко^{1*}, А.И. Прусский¹, О.В. Токко¹, Н.Е. Котельникова²

¹ Петрозаводский государственный университет, ул. Университетская, 10, Петрозаводск, 185014 (Россия), e-mail: dasha.gromyko00@gmail.com ² Институт высокомолекулярных соединений РАН, Большой пр., 31, Санкт-Петербург, 199004 (Россия)

Методами рентгеноструктурного анализа и компьютерного моделирования исследована структура модифицированной атомами серебра порошковой целлюлозы, выделенной из лиственной лигноцеллюлозы. Методом полнопрофильного анализа определено, что исследуемый образец соответствует моноклинной фазе целлюлозы Іβ с антипараллельным расположением молекул. Периоды элементарной ячейки: **a** = 7.881 Å, **b** = 7.837 Å, **c** = 10.603 Å; угол моноклинности γ = 95.63°, объем V = 652 Å³. Для анализа надмолекулярной структуры образца методом Шеррера определены размеры областей когерентного рассеяния (ОКР). Установлено, что в направлении [100] наблюдается увеличение, а в направлении [001] – уменьшение ОКР по сравнению с ОКР порошковой лигноцеллюлозы (ПЦ). Площадь поперечного сечения фибриллы модифицированного образца в плоскости **ab** (980 Å²) на ~8% больше площади фибриллы порошковой целлюлозы. Показатель кристалличности (ПК), рассчитанный методом Руланда, составляет 79%, что на 7% больше ПК порошковой целлюлозы. Итоговый кластер ПЦ, содержащей серебро, имеет формульную единицу С₆О₅Н_{10.12}А<u>в</u>о.08.

Введение

Биополимер целлюлоза является одним из основных компонентов клеточных стенок высших растений и содержится в больших количествах в хлопке (>90%), стеблях лубяных растений (лён, рами, джуг) (75– 90%), древесине (40–50%) и т.д. [1]. Целлюлоза также содержится в водорослях, грибах и некоторых видах бактерий [2]. Целлюлозу получают в основном из древесной массы путем химической варки и дальнейшей очистки [3]. Наиболее химически «чистую» целлюлозу получают из хлопчатника [2]. Целлюлозосодержащее сырье применяют во многих сферах промышленности: бумажной, топливной и пищевой [4]. Целлюлозу также широко используют в фармацевтике в качестве наполнителя, связующего или компонента в составе лекарственных форм [3].

При изучении целлюлозы на протяжении последнего столетия широко применяют методы ее модификации для получения новых материалов, обладающих полезными свойствами. Одной из потенциальных областей использования целлюлозных материалов является применение в качестве матриц для наночастиц металлов. В

e-mail: dasha.gromyko00@gmail.com Прусский Андрей Иванович – кандидат физико- математических наук, доцент, e-mail: prusskiiandrey@gmail.com Токко Ольга Владимировна – кандидат физико- математических наук, доцент, e-mail: solvak@yandex.ru Котельникова Нина Ефимовна – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	Громыко Дарья Валерьевна – магистрант,
Прусский Андрей Иванович – кандидат физико- математических наук, доцент, e-mail: prusskiiandrey@gmail.com Токко Ольга Владимировна – кандидат физико- математических наук, доцент, e-mail: solvak@yandex.ru Котельникова Нина Ефимовна – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	e-mail: dasha.gromyko00@gmail.com
математических наук, доцент, e-mail: prusskiiandrey@gmail.com <i>Токко Ольга Владимировна</i> – кандидат физико- математических наук, доцент, e-mail: solvak@yandex.ru <i>Котельникова Нина Ефимовна</i> – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	Прусский Андрей Иванович – кандидат физико-
e-mail: prusskiiandrey@gmail.com Токко Ольга Владимировна – кандидат физико- математических наук, доцент, e-mail: solvak@yandex.ru Котельникова Нина Ефимовна – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	математических наук, доцент,
Токко Ольга Владимировна – кандидат физико- математических наук, доцент, e-mail: solvak@yandex.ru Котельникова Нина Ефимовна – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	e-mail: prusskiiandrey@gmail.com
математических наук, доцент, e-mail: solvak@yandex.ru Котельникова Нина Ефимовна – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	Токко Ольга Владимировна – кандидат физико-
Котельникова Нина Ефимовна – доктор химических наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	математических наук, доцент, e-mail: solvak@yandex.ru
наук, ведущий научный сотрудник, e-mail: nkotel@mail.ru	Котельникова Нина Ефимовна – доктор химических
e-mail: nkotel@mail.ru	наук, ведущий научный сотрудник,
	e-mail: nkotel@mail.ru

течение последних десятилетий серебро, в особенности наночастицы серебра (НС), благодаря высокой антимикробной активности широко используют в биомедицине, фармацевтике, а также в различных отраслях промышленности – электронике, катализе, оптической индустрии и других [5, 6].

Порошковые лигноцеллюлозы (ПЦ), имеющие высокое содержание α-целлюлозы и ограни-

^{*} Автор, с которым следует вести переписку.

ченное содержание лигнина, нашли широкое применение для получения композиционных материалов, содержащих внедренное серебро [5]. Широко использовали в качестве матриц порошковые целлюлозы, выделенные из различных растительных источников – древесины, хлопка, лубяных растений и т.д. Так, в работе [5] исследовали применение порошковых целлюлоз, полученных с высоким выходом с помощью кислотного гидролиза из хвойной и лиственной целлюлоз, волокон льна, целлюлозы соломы и хлопка. Композиционные материалы на основе ПЦ, содержащие серебро, проявляли антимикробную активность по отношению к ряду штаммов микроорганизмов. Развитие этого направления исследования привело к широкому изучению механизма образования композиционных материалов ПЦ, содержащих серебро, чему посвящено значительное количество публикаций. Так, в работе [7] исследовали лиственную лигноцеллюлозу, модифицированную атомами серебра. Серебро вводили путем погружения образца в раствор хлорида серебра AgCl в растворе гидрата аммиака NH4OH, в результате чего AgCl вступал в реакцию с NH4OH, образуя соединение [Ag(NH₃)₂]Сl и воду. Замена водорода гидроксильной группы (-OH) в молекуле целлюлозы на атомы Ag происходила с образованием комплекса целлюлоза -ОАд в процессе высушивания модифицированного образца. Многочисленные исследования введения металлов, в частности, серебра, в матрицы лигноцеллюлоз показали, что модификация полимерной матрицы существенно зависит от вида металла, экспериментальных условий и приводит к изменению свойств и структуры получаемых композиционных материалов [8].

Ранее в работах [9, 10] методами рентгеноструктурного анализа, расчета ближнего порядка и компьютерного моделирования были изучены структура и свойства порошковых целлюлоз различного происхождения: древесной хвойной и регенерированной сульфатной лиственной целлюлозы, выделенной из льняного волокна, этилцеллюлозы, а также гидрогеля, полученного при регенерации из раствора лигноцеллюлоз в системе N,N-диметилацетамид/LiCl (ДМАА/LiCl). Было показано, что происхождение целлюлоз и способ их выделения из растительного сырья оказывают существенное влияние на структурные характеристики композиционных материалов.

В данном исследовании были поставлены следующие задачи: выполнить сравнительное рентгенографическое исследование образцов порошковой лигноцеллюлозы, выделенной из древесной лиственной целлюлозы, и того же образца, содержащего внедренное серебро, а также осуществить компьютерное построение атомной конфигурации, описывающей структуру целлюлозы, модифицированной атомами серебра.

Материалы и методы исследования

Порошковая целлюлоза получена сульфатной варкой из древесной лиственной беленой лигноцеллюлозы. Исходную лигноцеллюлозу подвергали гидролитической деструкции в 10%-ном водном растворе серной кислоты при гидромодуле 1 : 10 и температуре 100 °C в течение 2 ч. После промывки до полного удаления кислоты сушку проводили на воздухе при 20 °C [11]. Краткая характеристика образца ПЦ представлена в следующем разделе.

ПЦ была использована в качестве матрицы для введения серебра. Его осуществляли в процессе прямого восстановления ионов серебра из раствора AgNO₃ в матрице ПЦ в двухстадийном процессе, как описано в публикации [5]. В качестве восстановителя применяли трехзамещенный лимоннокислый натрий (цитрат натрия) [12]. Образцы ПЦ, содержащей серебро, будут далее называться ПЦ+Аg.

Рентгенограммы регистрировали на дифрактометрах типа ДРОН-3М и ДРОН-3 в автоматическом режиме на монохроматизированных кристаллами пиролитического графита МоК α , СиК α и FeK α излучениях в интервале углов рассеяния от 3 до 145° с шагом 0.1 в двух геометриях: на отражение и на прохождение (просвет).

Характеристики структуры кристаллической составляющей модифицированной целлюлозы получали с использованием программы «Метод Ритвельда» программного комплекса «PDWin 4.0» НПО «Буревестник». Данный метод основан на минимизации функционала Φ [13, 14]:

$$\boldsymbol{\Phi} = \mathbf{\mathring{a}}_{i=1}^{N} w_i \left[\left(\boldsymbol{I}_i^{\mathcal{H}} - \boldsymbol{I}_i^{\mathcal{T}} \right) \right]^2.$$
⁽¹⁾

Профильный фактор недостоверности (R_p) позволил определить, насколько точно рассчитаны структурные параметры:

$$R_{p} = \frac{\mathbf{\mathring{a}}_{i=1}^{N} (I_{i}^{\Im} - I_{i}^{\Upsilon})}{\mathbf{\mathring{a}}_{i=1}^{N} I_{i}^{\Im}}.$$
(2)

В формулах (1) и (2): I^{∂}_{i} – наблюдаемые интенсивности в каждой точке дифрактограммы, I^{T}_{i} – теоретические значения интенсивностей в каждой точке дифрактограммы (суммирование проводится по всем точкам спектра), N – количество точек на дифрактограмме.

Параметры надмолекулярной структуры, такие, как показатель кристалличности и линейные размеры кристаллитов (*D*_{hkl} – OKP) рассчитаны методами Руланда [15] и Шеррера [16] соответственно:

$$\Pi K = \frac{I_{\text{kp.}}}{I_{\text{kp.}} + I_{\text{anoph.}}} \rtimes 100\%$$
(3)

где *І*_{кр.} и *І*_{аморф.} – интегральные интенсивности кристаллической и аморфной составляющих.

$$D_{hkl} = \frac{kl}{b_{hkl}\cos q_{hkl}} \tag{4}$$

где D_{hkl} – размер кристаллита (Å), β_{hkl} – интегральная ширина отражения от плоскости hkl, $2\theta_{hkl}$ – угол рассеяния данной плоскостью, λ – длина волны рентгеновского излучения, k – коэффициент, зависящий от формы кристаллитов в исследуемом объекте.

Так как основные кристаллографические направления целлюлозы Іβ [1Т0], [110], [100] лежат в одной плоскости, то при соединении концов *D*_{*hkl*} получаем некоторый шестиугольник, который характеризует схематическое изображение формы поперечного сечения элементарных фибрилл.

Нормировку кривых распределения I(s), исправленных на комптоновское рассеяние в электронных единицах, где *s* – длина дифракционного вектора, равная $s=4\pi sin\theta/\lambda$ выполняли методом Уоррена [17]. Расчёт *s*-взвешенных интерференционных функций H(s) и кривых распределения парных функций D(r) проводили методом Финбака-Уорена [9]:

$$H(s) = s (I(s) - \mathbf{a}^{2} f_{ij}^{2}(s)) \times e^{(-a^{2}s^{2})} g(s)^{-2}$$
(5)

$$D(r) = 2p^2 r r_{el} \mathop{\otimes}\limits_{j}^{s} Z_j + \mathop{\bigotimes}\limits_{j}^{s_{max}} H(s) \sin(sr) ds$$
(6)

где **å** $f_{ij}^2(s)$ – кривая независимого рассеяния атомов; ρ_{el} – электронная плотность образца; $e^{(-a^2s^2)}$ – коэффициент затухания; g(s) – фактор обострения; Z_i – атомный номер *j*-го элемента.

Координационные числа N_{ij} рассчитывали методом наименьших квадратов (МНК (LSM)), а радиусы и размытия координационных сфер (r_{ij} и σ_{ij} соответственно) находили методом подбора [16]. Начальные значения r_{ij} и σ_{ij} использовали, исходя из расчетов соответствующих данных для моноклинной фазы целлюлозы Іβ [18].

На основе полученных величин N_{ij} , r_{ij} и σ_{ij} рассчитывали кривую парных функций $D_{LSM}(r)$:

$$D_{LSM}(r) = \mathop{a}\limits^{N}_{i=1} \mathop{a}\limits^{M}_{j=1} \frac{N_{ij}}{r_{ij}} P_{ij}(r)$$
(7)

где *i*, *j* – суммирование по числу заданных в расчете координационных сфер N и числу атомов (M) сорта *j*, находящихся на *i*-й координационной сфере; $P_{ij}(r)$ – парная функция, описывающая распределение электронной плотности одной отдельно взятой пары атомов.

Критерием соответствия для кривых D(r), рассчитанных из экспериментальной кривой, и $D_{LSM}(r)$ служит параметр l, который определяется через среднеквадратичное отклонение данных кривых. Более подробное описание данного метода представлено в работе [16].

Для расчета распределения интенсивности рассеяния хаотически разориентированными модельными кластерами атомов использовали формулу Дебая [18]:

$$I(s) = \frac{1}{N_f} \mathop{\text{e}}_{\mathbf{\ddot{e}}_{i=1}}^{\mathbf{\acute{e}}_{N}} f_i^2 + \mathop{\text{a}}_{i=1}^{N_{\text{max}}} (f_{pi}^* f_{qi} + f_{pi} f_{qi}^*) N_{pqr_i} \frac{\sin(sr_i)}{sr_i} \exp(0.5e_i^2 s^2) \mathop{\text{\dot{u}}}_{\mathbf{\ddot{u}}},$$
(8)

где $\overset{N}{a}$ f_i^2 – распределение интенсивности независимого рассеяния всеми атомами кластера, f_{pi} , f_{qi} – функ-

ции атомного рассеяния пары атомов сорта *p* и *q*, находящихся на расстоянии r_i ; N_{max} – число межатомных расстояний r_i ; ε_i – дисперсия межатомных расстояний r_i ; N – число атомов в кластере; N_{pqri} – число атомных сортов *p* и *q* в кластере, находящихся на одном и том же среднем расстоянии r_i друг от друга.

Для сравнения с экспериментальными данными по формулам (5 и 6) из кривых I(s) рассчитывали s – взвешенные интерференционные функции H(s) [19] и парные функции D(r).

Для описания структуры ближнего порядка модифицированных целлюлоз с помощью компьютерных моделей использовали метод трансляции элементарной ячейки целлюлозы Іβ с антипараллельным расположением молекул [20] вдоль кристаллографических направлений с дальнейшей оптимизацией и внедрением атомов серебра в программе HyperChem8 [20, 21]. Для минимизации энергии модели было выбрано поле Mm+, являющееся базовым силовым полем молекулярной механики в данной программе [22]. Оптимизацию структуры в программе HyperChem проводили по методу Полака-Рибьера [9, 23] таким образом, чтобы полная энергия и ее градиент достигали минимальных значений.

Результаты и обсуждение рентгенографического эксперимента

Краткая характеристика исходного образца ПЦ представлена в таблице 1 [11].

На рисунке 1 представлены кривые распределения интенсивности рассеяния ПЦ, содержащей серебро, полученные на излучении CuKα (рис. 1a) в геометрии на отражение, в сравнении с теоретически рассчитанной рентгенограммамой для фазы целлюлозы Iβ (рис. 1a). На рисунке 16 представлены рентгенограммы исходной ПЦ и того же образца, содержащего серебро, полученные на излучении FeKα.

При сравнении экспериментальной рентгенограммы исследуемого образца ПЦ-Аg с теоретической рентгенограммамой целлюлозы Iβ (рис. 1a) видно, что наиболее интенсивные отражения согласуются по положению с таковыми, характерными для построенной модели, что говорит о том, что структура исследуемого образца соответствует данной фазе.

Как известно, существуют три модели целлюлозы І β , характеризующие взаимное расположение соседних молекул [15]: антипараллельное, параллельное вверх (up), параллельное вниз (down). Методом полнопрофильного анализа было определено, что образец ПЩ+Аg имеет моноклинную ячейку с антипараллельным расположением молекул и следующие характеристики: **a** = 7.881(18) Å, **b** = 7.837(95) Å, **c** = 10.603(16) Å, $\gamma = 95.63(22)^{\circ}$. Фактор недостоверности составил $R_p = 6.29\%$. Однако уточненное значение периода **b** сильно занижено, значение периода **c**, напротив, завышено по сравнению с данными для фазы целлюлозы І β с антипараллельным расположением молекул [20]. Уточненные значения периода **a** и угла γ равны в пределах погрешности.

Таблица 🛾	1. (Эсновные	характе	ристики	ΠЦ	и содерж	кание с	еребра	в обр	азце	ΠЦ	(+A	١g
-----------	------	----------	---------	---------	----	----------	---------	--------	-------	------	----	-----	----

Характеристики и свойства ПЦ							
Содержание основни	СП	Длина воло-	$V\Pi M^2/r$	BV %	ППР им	Ад, вес. %	
α-целлюлоза	лигнин	CIIV	кон, мкм	3 11, WI /1	D3, 70	ппп, нм	
79.5±1.3	7.9±0.3	240	50-90	230	54	4.2	0.77

СП_v – средневязкостная степень полимеризации; УП – удельная поверхность определена по сорбции аргона; ВУ – водоудерживающая способность определена по методу, описанному в [11]; ППР – поперечный размер кристаллитов определен по формуле Шерера; Аg – содержание серебра определено по методу, описанному в [5].

Рис. 1. а – экспериментальная рентгенограмма ПЩ+Аg, полученная на излучении CuKα в геометрии на отражение и теоретически рассчитанная рентгенограмма целлюлозы Iβ, б – экспериментальные рентгенограммы ПЩ+Аg (1 —) и исходной ПЩ (2 —), полученные на излучении FeKα

Методом Руланда [15] рассчитаны ПК для исследуемых образцов ПЦ+Аg (ПК=79%) и ПЦ (ПК=72%). По формуле Шеррера [16] определены поперечные размеры кристаллитов в двух приближениях Гаусса и Коши и по их средним значениям построены формы поперечных сечений элементарных фибрилл (рис. 2).

Из рисунка 2 следует, что площадь поперечного сечения элементарной фибриллы (S_{ЭЛ.Ф.}) образца ПЩ+Аg больше на ~8% соответствующего значения для ПЩ и составляет 980 Å² (табл. 2). Области когерентного рассеяния в основных кристаллографических направлениях у обоих образцов различаются незначительно (рис. 2б). Наиболее значительное различие D_{hkl} наблюдается в направлении [100]: значение D_{hkl} для ПЩ+Аg составляет 48.25 Å, для ПЩ – 46 Å.

Для оценки D_{hkl} в направлении [001], которое определяет длину элементарных фибрилл целлюлозы, были рассчитаны значения, полученные при съемке на просвет. Это было сделано ввиду того, что исследуемые образцы анизотропны. Значение D_{hkl} для ПЩ+Аg составляет 77.5 Å, ПЩ – 83.0 Å. Таким образом, элементарные фибриллы двух исследованных образцов отличаются по размерам в поперечном направлении, по длине элементарных фибрилл и по площади поперечного сечения (табл. 2). Из результатов расчетов, представленных в таблице 2, следует, что показатель кристалличности образца ПЩ+Аg возрастает на 7% по сравнению с ПЩ; а области когерентного рассеяния ПЩ и ПЩ+Аg различаются незначительно: наблюдается увеличение D_{hkl} в направлении [100] и уменьшение в направлении [001] в ПЩ+Аg.

Однако после добавления сферы O-Ag с радиусом $r_i \approx 1.9$ Å наблюдается более точная корреляция кривых D(r): степень несоответствия кривых уменьшается до 3.3% (рис. 3).

Рис. 2. Схематические изображения формы поперечного сечения элементарных фибрилл: а – образца ПЦ+Аg и б – ее сравнение (1) с формой исходной ПЦ (2)

Для анализа структуры аморфной составляющей модифицированной целлюлозы была получена рентгенограмма на излучении МоКα в геометрии на просвет.

Методом наименьших квадратов из кривых распределения парных функций D(r) рассчитаны координационные числа N_{ij} , радиусы r_{ij} и размытия σ_{ij} координационных сфер для образца ПЦ+Аg. Характеристики ближнего порядка образца приведены в таблице 3 в сравнении с характеристиками образца ПЦ и теоретически рассчитанными для целлюлозы І β .

Анализ таблицы 3 показывает, что радиусы координационных сфер, рассчитанные для ПЦ, согласуются с теоретическими значениями радиусов, рассчитанными для фазы целлюлозы Іβ с антипараллельным расположением молекул [20], а различия в координационных числах находятся в пределах погрешности.

Характеристики ближнего порядка, рассчитанные для ПЦ+Аg, отличаются от характеристик ПЦ. Так, появляется сфера O-Ag с радиусом 1.9 Å (рис. 3), которая отсутствует на кривых распределения парных функций D(r), рассчитанных для ПЦ и теоретически рассчитанной целлюлозы Іβ. Наблюдается также значительное изменение значений координационных чисел для ПЦ+Аg по сравнению со значениями для ПЦ и целлюлозы Іβ (табл. 3).

На рисунке 3 приведены экспериментальная кривая D(r) для ПЦ+Аg и рассчитанные по формуле (6) кривые распределения парных функций для модели с учетом присутствия атомов серебра в ПЦ+Аg и без учета.

Степень несоответствия экспериментальной и подбираемой кривых D(r) без учета присутствия серебра составила 47.7%. Возможные причины такого расхождения, по-видимому, объясняются:

- изменением взаимной ориентации цепей целлюлозы;

- наличием атомов серебра в образце.

гаоматрия		ПЦ+А	g		Щ			
теометрия	отраж	ение	просвет		отражение		просвет	
ПК, %	79					72		
размер ОКР	D, Å	D, Å	D, Å	D, Å	D, Å	D, Å	D, Å	D, Å
(hkl)	g	k	g	k	g	k	g	k
110	32	33	34	35	30	34	27	28
110	38	40	40	41	36	40	56	64
102	21	21	30	31	54	62	74	95
200	49	52	45	47	43	50	43	48
004	9	9	74	81	38	43	76	90
S эл. , Å ²	980					902	•	

Таблица 2. Сравнительный анализ характеристик надмолекулярной структуры ПЦ+Аg и ПЦ

ΔΠК=±5%, ΔD_{hkl}=±5Å, ПК – показатель кристалличности, ОКР – область когерентного рассеяния, g – метод Гаусса, k – метод Коши, (hkl) – индексы отражений, из ширины которых рассчитаны D_{hkl}.

Таблица 3. Характеристики ближнего порядка образцов ПЦ+Аg и ПЦ в сравнении с теоретически рассчитанными для фазы целлюлозы Iβ

Тип		ПЦ+Ад		П	Ţ	Целлюлоза Іβ [17]		
сферы	$r_{ij}^{\varPi \amalg + Ag}$, Å	$N_{ij}^{\varPi \! \! \amalg + Ag}$, ат.	$oldsymbol{\mathcal{S}}_{ij}^{\varPi \amalg + Ag}$, Å	$r_{ij}^{\varPi \mu}$, Å	$N_{ij}^{\Pi\mathcal{U}}$, ат	<i>rij</i> (reop), Å	<i>Nij</i> (теор), ат.	
C-O1	1.46	1.8	0.10	1.45	2.06	1.46	2.6	
O-Ag	1.90	0.08	0.50	_	_	-	-	
$C-O_2$	2.37	3.7	0.12	2.30	2.45	2.37	2.3	
C-C	2.60	2.9	0.01	2.50	1.6	2.40	1.58	
0-0	2.86	5.4	0.15	2.86	3.2	2.58	4.88	
C-O ₃	3.10	3.1	0.20	3.02	2.5	3.20	6.76	

 $\Delta r_{ij} = \pm 0.01$ Å, $\Delta N_{ij} = \pm 0.1$ at.

Рис. 3. Кривые распределения парных функций образца ПЦ+Аg: экспериментальная (—), рассчитанная: с учетом атомов серебра (—) и без учета атомов серебра (—)

Для рассмотрения трехмерного структурного состояния исследуемого образца ПЩ+Аg построены компьютерные модели. В качестве основы использовали элементарную ячейку целлюлозы I β с антипараллельным расположением молекул [20]. На первом этапе производили трансляцию элементарной ячейки с кратностью 5 вдоль кристаллографических направлений. Далее в полученные модели внедряли 0.08 атомов серебра на формульную единицу (значение $N_{ij}^{\Pi U+Ag}$ использовали из таблицы 3) с дальнейшей геометрической оптимизацией методом Полака-Рибьера в программном комплексе HyperChem [23]. Методом последовательных итераций было определено, что, если кратность трансляций периодов **a** и **c** больше **b**, кривая распределения интенсивности по форме и положению основных максимумов близка к экспериментальной кривой. Поэтому были построены соответствующие этому правилу модели ПЦ+Аg, в структуру которых внедрены атомы серебра, и выполнена их оптимизация методом Полака-Рибьера. Итоговый кластер, для которого расхождение рассчитанной и экспериментальной кривых I(s) и H(s) было минимально (рис. 4), представлял собой конфигурацию с линейными размерами **a**=47.29 Å, **b**=23.51 Å, **c**=84.82 Å (что соответствует трансляции 6**a**, 3**b**, 8**c**), содержащую 0.08 атомов серебра на формульную единицу.

Рис. 4. Кривые распределения интенсивности рассеяния I(s) (a) и s-взвешенные интерференционные функции H(s) (б) для исследуемого образца ПЦ+Ag (—) и модели целлюлозы I β с числом трансляций 6a, 3b, 8c с геометрической оптимизацией модели C₆O₅H_{10.12}Ag_{0.08} (—) в сравнении с теоретической рентгенограммой целлюлозы I β с антипараллельным расположением молекул (—). Итоговый кластер (в) с числом трансляций 6a, 3b, 8c после геометрической оптимизации. Фрагмент фибриллы (г)

Для анализа влияния атомов серебра на ближний порядок, рассчитанные для итогового кластера радиусы координационных сфер r_{ij} , размытия σ_{ij} и координационные числа N_{ij} сравнивали с экспериментальными значениями. Результаты представлены в таблице 4.

Из анализа таблицы 4 следует, что радиусы координационных сфер r_{ij} изменяются в пределах погрешности, а координационные числа N_{ij} у модели (рис. 4) занижены по сравнению с данными, полученными МНК. Так как атомы серебра внедрены в модель случайным образом, а анализ кластера проводили не для всей модели целиком, то значение координацонного числа N_{ij} для сферы O-Ag занижено, по сравнению с рассчитанным МНК из эксперимента.

Итоговый кластер содержит 3456 атомов углерода, 2880 атомов кислорода, 6290 атомов водорода и 46 атомов серебра с конечной формульной единицей $C_6O_5H_{10.12}Ag_{0.08}$. Форма, площадь поперечного сечения и длина элементарной фибриллы построенной модели согласуется с экспериментальными данными, рассчитанными из парных функций D(r) методом наименьших квадратов.

Тип сферы	<i>r_{ij эксп},</i> Å	<i>N_{ij эксп}</i> , ат.	r_{ij модель, Å	N _{ij модель} , ат.
C-O ₁	1.46	1.8	1.49	1.3
O-Ag	1.90	0.08	2.00	0.01
C-O ₂	2.37	3.7	2.43	1.8
C-C	2.60	2.9	2.61	2.7
0-0	2.86	5.4	2.71	2.2
C-O ₃	3.10	3.0	3.11	1.1

Таблица 4. Характеристики ближнего порядка, рассчитанные для итогового кластера, в сравнении с характеристиками для образца из экспериментальной кривой

 $\Delta r_{ij} = \pm 0.01 \text{ Å}, \Delta N_{ij} = \pm 0.1 \text{ at.}$

Выводы

 Методом Ритвельда определено, что исследуемый образец ПЦ+Аg соответствует фазе целлюлозы Іβ с антипараллельным расположению молекул.

Показатель кристалличности образца ПЦ+Ад возрастает на 7% по сравнению с ПК образца ПЦ.
 Площадь поперечного сечения элементарной фибриллы этого образца также возрастает на ~8% по сравнению с ПЦ и составляет 980 Å².

– Анализ подбираемой и экспериментальной кривых D(r) показал, что при добавлении сферы O-Ag (r~1.9 Å) наблюдается их почти полное совпадение (R_p =3%). Структура в области ближнего порядка образца ПЦ+Ag описывается кластером, представляющим собой протранслированную элементарную ячейку целлюлозы Іβ с антипараллельным расположением молекул с числом трансляций 6**a**, 3**b**, 8**c** и с дальнейшей геометрической оптимизацией методом Полака-Рибьера в программном комплексе HyperChem.

 Итоговый кластер образца ПЦ+Аg содержит 3456 атомов углерода, 2880 атомов кислорода, 6290 атомов водорода и 46 атомов серебра и имеет конечную формульную единицу C₆O₅H_{10.12}Ag_{0.08}.

Список литературы

- Brigham C. Biopolymers: Biodegradable Alternatives to Traditional Plastics // Green Chemistry. Elsevier, 2018. Pp. 753–770. DOI: 10.1016/B978-0-12-809270-5.00027-3.
- Боголицын К.Г. и др. Влияние вида сушки на структурно-поверхностные характеристики целлюлозы бурых водорослей // Сверхкритические флюиды: теория и практика. 2021. Т. 16. №2. С. 110–130.
- Gupta P.K., Raghunath S.S., Prasanna D.V., Venkat P., Shree V., Chithananthan C., Choudhary S., Surender K., Geetha K. An Update on Overview of Cellulose, Its Structure and Applications // Cellulose. IntechOpen, 2019. DOI: 10.5772/intechopen.84727.
- Алёшина Л.А., Коновалова К.А. Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе. Петрозаводск, 2014. 123 с.
- Михаилиди А.М., Котельникова Н.Е., Шахмин А.Л., Андерссон С., Сапрыкина Н.Н., Кудряшов В.И., Ананьева Е.П., Мартакова Ю.В. Получение, характеристика и антибактериальные свойства нанокомпозитов целлюлоза – серебро, полученных из растворов в ДМАА/LiCl // Химические волокна. 2015. №4. С. 40–44.
- 6. Liangpeng G., Qingtao L., Meng W., Jun O., Xiaojian L., Malcolm M.X. Nanosilver particles in medical applications: synthesis, performance, and toxicity // Int. J. Nanomed. 2014. Vol. 9. Pp. 2399–2407. DOI: 10.2147/IJN.S55015.
- Kim J., Kwon S., Ostler E. Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy // J. Biol. Eng. 2009. Vol. 3. Pp. 20456–20464. DOI: 10.1186/1754-1611-3-20.

- Palza H. Review. Antimicrobial polymers with metal nanoparticles // Int. J. Mol. Sci. 2015. Vol. 16. Pp. 2099–2116. DOI: 10.3390/ijms16012099.
- 9. Прусский А.И., Алешина Л.А. Компьютерное моделирование атомной структуры регенерированной целлюлозы // Высокомолекулярные соединения А. 2016. Т. 58. №3. С. 268–281. DOI: 10.7868/S2308112016030147.
- Алешина Л.А., Котельникова Н.Е., Чернова Е.А. Структурные характеристики лигноцеллюлоз и гидрогелей, полученных на их основе // Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе: материалы II Всероссийской научно-практической Интернет-конференции с международным участием. Петрозаводск, 2016. С. 81–86.
- Щербакова Т.П., Котельникова Н.Е., Быховцева Ю.В. Сравнительное изучение образцов порошковой и микрокристаллической целлюлозы различного природного происхождения. Физико-химические характеристики // Химия растительного сырья. 2011. №3. С. 33–42.
- Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich Method for Gold Nanoparticle Synthesis Revisited // J. Phys. Chem. B. 2006. Vol. 110 (32). Pp. 15700–15707. DOI: 10.1021/jp061667w.
- Driemeier C. Two-dimensional Rietveld analysis of celluloses from higher plants // Cellulose. 2014. Vol. 21(2). Pp. 1065–1073. DOI: 10.1007/s10570-013-9995-2.
- 14. Цыбуля С.В., Черепанова С.В. Введение в структурный анализ нанокристаллов. Новосибирск, 2008. 92 с.
- Алешина Л.А. Рентгенография целлюлоз // Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе: материалы II Всероссийской научно-практической Интернет-конференции с международным участием. Красноярск, 2016. 164 с. DOI: 10.12731/nkras.ru/SFHS.2016.164.
- Алешина Л.А., Шиврин О.Н. Рентгеновский анализ кристаллов. Теория и результаты дифракционных исследований. Palmarium Academic Publishing, 2012. 412 с.
- 17. Алешина Л.А., Михалина А.А., Луговская Л.А. Структура хвойной беленой целлюлозы в различных состояниях // Лесной вестник. 2014. №2. С. 107–114.
- Фофанов А.Д. Обзор моделей, используемых при изучении нанопорошковых и аморфных материалов // Физико-химические методы изучения минеральных агрегатов, минералоидов и синтетических материалов: проблемы и перспективы: сборник материалов докладов научно-практического семинара. Петрозаводск, 2018. С. 73–80.
- Люханова И.В. Компьютерное моделирование атомной структуры целлюлозы при взаимодействии с молекулами воды // European Research: сборник статей победителей VIII международной научно-практической конференции. Пенза, 2017.
- Алешина Л.А., Глазкова С.В., Подойникова М.В., Фофанов А.Д., Силина Е.В. Современные представления о строении целлюлоз (обзор) // Химия растительного сырья. 2001. Т. 1. С. 5–36.
- Haigler C.H. et al. Molecular Modeling and Imaging of Initial Stages of Cellulose Fibril Assembly: Evidence for a Disordered Intermediate Stage // PLoS ONE. 2014. Vol. 9. e93981. DOI: 10.1371/journal.pone.0093981.
- 22. Stan Tsai C. An Introduction to Computational Biochemistry. Odense, Denmark; New York, 2007. 620 p.
- Прусский А.И. Атомная структура целлюлозы, регенерированной в растворе диметилацетатамида-LiCl // Технологии и оборудование химической, биотехничекой и пищевой промышленности: материалы IX Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых с международным участием. Барнаул, 2016.

Поступила в редакцию 26 мая 2023 г.

После переработки 5 июня 2023 г.

Принята к публикации 7 июля 2023 г.

Для цитирования: Громыко Д.В., Прусский А.И., Токко О.В., Котельникова Н.Е. Структурное исследование порошковой лигноцеллюлозы, содержащей серебро, методом компьютерного моделирования атомной структуры // Химия растительного сырья. 2023. №4. С. 69–79. DOI: 10.14258/jcprm.20230413001.

Gromyko D.V.^{1*}, *Prusskiy A.I.*¹, *Tokko O.V.*¹, *Kotelnikova N.E.*² STRUCTURAL STUDY OF POWDER LIGNOCELLULOSE CONTAINING SILVER BY COMPUTER SIMULATION OF ATOMIC STRUCTURE

¹ Petrozavodsk State University, Universitetskaya st., 10, Petrozavodsk, 185014 (Russia),

e-mail: dasha.gromyko00@gmail.com

² Institute of Macromolecular Compounds Russian Academy of Sciences, Bol'shoy ave., 31, St. Petersburg, 199004 (Russia)

The structure of silver modified powder cellulose isolated from hardwood lignocellulose was investigated using X-ray structural analysis and computer modeling. Full-profile analysis proved that the studied sample corresponds to the monoclinic phase of cellulose I β with an antiparallel arrangement of molecules. The unit cell parameters were **a** = 7.881 Å, **b** = 7.837 Å, **c** = 10.603 Å, and γ = 95.63°; the volume V = 652 Å³. The sizes of coherent scattering regions (CSR) of the sample calculated with a Scherrer method were determined to analyze the supramolecular structure. An increase of CSR was observed in the [100] direction and a decrease was found in the [001] direction compared to CSR of the powder lignocellulose. Cross-section area of the fibril of the modified sample in plane **ab** (980 Å²) was found to be ~8% larger than that of powder cellulose. The crystallinity index (CI) calculated with a Ruland method was found to be 79% which was 7% higher than that of powder cellulose. The final cluster of the silver containing powder cellulose had a chemical formula of C₆O₅H_{10.12}Ag_{0.08}.

Keywords: powder cellulose, silver, X-ray diffraction analysis, computer modeling.

References

- 1. Brigham C. Green Chemistry. Elsevier, 2018, pp. 753–770. DOI: 10.1016/B978-0-12-809270-5.00027-3.
- 2. Bogolitsyn K.G. i dr. Sverkhkriticheskiye flyuidy: teoriya i praktika, 2021, vol. 16, no. 2, pp. 110-130. (in Russ.).
- Gupta P.K., Raghunath S.S., Prasanna D.V., Venkat P., Shree V., Chithananthan C., Choudhary S., Surender K., Geetha K. *Cellulose*. IntechOpen, 2019. DOI: 10.5772/intechopen.84727.
- Aloshina L.A., Konovalova K.A. Struktura i fiziko-khimicheskiye svoystva tsellyuloz i nanokompozitov na ikh osnove. [Structure and physicochemical properties of celluloses and nanocomposites based on them]. Petrozavodsk, 2014, 123 p. (in Russ.).
- 5. Mikhailidi A.M., Kotel'nikova N.Ye., Shakhmin A.L., Andersson S., Saprykina N.N., Kudryashov V.I., Anan'yeva Ye.P., Martakova Yu.V. *Khimicheskiye volokna*, 2015, no. 4, pp. 40–44. (in Russ.).
- Liangpeng G., Qingtao L., Meng W., Jun O., Xiaojian L., Malcolm M.X. Int. J. Nanomed., 2014, vol. 9, pp. 2399– 2407. DOI: 10.2147/IJN.S55015.
- 7. Kim J., Kwon S., Ostler E. J. Biol. Eng., 2009, vol. 3, pp. 20456–20464. DOI: 10.1186/1754-1611-3-20.
- 8. Palza H. Review. Int. J. Mol. Sci., 2015, vol. 16, pp. 2099–2116. DOI: 10.3390/ijms16012099.
- 9. Prusskiy A.I., Aleshina L.A. Vysokomolekulyarnyye soyedineniya A, 2016, vol. 58, no. 3, pp. 268–281. DOI: 10.7868/S2308112016030147. (in Russ.).
- Aleshina L.A., Kotel'nikova N.Ye., Chernova Ye.A. Struktura i fiziko-khimicheskiye svoystva tsellyuloz i nanokompozitov na ikh osnove: materialy II Vserossiyskoy nauchno-prakticheskoy Internet-konferentsii s mezhdunarodnym uchastiyem. [Structure and physical and chemical properties of celluloses and nanocomposites based on them: materials of the II All-Russian scientific and practical Internet conference with international participation]. Petrozavodsk, 2016, pp. 81–86. (in Russ.).
- 11. Shcherbakova T.P., Kotel'nikova N.Ye., Bykhovtseva Yu.V. *Khimiya rastitel'nogo syr'ya*, 2011, no. 3, pp. 33–42. (in Russ.).
- Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. J. Phys. Chem. B, 2006, vol. 110 (32), pp. 15700– 15707. DOI: 10.1021/jp061667w.
- 13. Driemeier C. Cellulose, 2014, vol. 21(2), pp. 1065-1073. DOI: 10.1007/s10570-013-9995-2.
- 14. Tsybulya S.V., Cherepanova S.V. *Vvedeniye v strukturnyy analiz nanokristallov*. [Introduction to structural analysis of nanocrystals]. Novosibirsk, 2008, 92 p. (in Russ.).
- 15. Aleshina L.A. Struktura i fiziko-khimicheskiye svoystva tsellyuloz i nanokompo-zitov na ikh osnove: materialy II Vserossiyskoy nauchno-prakticheskoy Internet-konferentsii s mezhdunarodnym uchastiyem. [Structure and physicochemical properties of celluloses and nanocomposites based on them: materials of the II All-Russian scientific and practical Internet conference with international participation]. Krasnoyarsk, 2016, 164 p. DOI: 10.12731/nkras.ru/SFHS.2016.164. (in Russ.).
- 16. Aleshina L.A., Shivrin O.N. *Rentgenovskiy analiz kristallov. Teoriya i rezul'taty difraktsionnykh issledovaniy.* [X-ray analysis of crystals. Theory and results of diffraction studies]. Palmarium Academic Publishing, 2012, 412 p. (in Russ.).
- 17. Aleshina L.A., Mikhalina A.A., Lugovskaya L.A. Lesnoy vestnik, 2014, no. 2, pp. 107–114. (in Russ.).
- Fofanov A.D. Fiziko-khimicheskiye metody izucheniya mineral'nykh agregatov, mineraloidov i sinteticheskikh materialov: problemy i perspektivy. Sbornik materialov dokladov nauchno-prakticheskogo seminara. [Physico-chemical methods for studying mineral aggregates, mineraloids and synthetic materials: problems and prospects. Collection of materials from scientific and practical seminar reports]. Petrozavodsk, 2018, pp. 73–80. (in Russ.).
- 19. Lyukhanova I.V. European Research: sbornik statey pobediteley VIII mezhdunarodnoy nauchno-prakticheskoy konferentsii. [European Research: collection of articles of the winners of the VIII international scientific and practical conference]. Penza, 2017. (in Russ.).

^{*} Corresponding author.

- 20. Aleshina L.A., Glazkova S.V., Podoynikova M.V., Fofanov A.D., Silina Ye.V. *Khimiya rastitel'nogo syr'ya*, 2001, vol. 1, pp. 5–36. (in Russ.).
- 21. Haigler C.H. et al. PLoS ONE, 2014, vol. 9, e93981. DOI: 10.1371/journal.pone.0093981.
- 22. Stan Tsai C. An Introduction to Computational Biochemistry. Odense, Denmark; New York: Wiley-Liss, 2007, 620 p.
- 23. Prusskiy A.I. Tekhnologii i oborudovaniye khimicheskoy, biotekhnichekoy i pishchevoy promyshlennosti: materialy IX Vserossiyskoy nauchno-prakticheskoy konferentsii studentov, aspirantov i molodykh uchenykh s mezhdunarodnym uchastiyem. [Technologies and equipment of the chemical, biotechnical and food industries: materials of the IX All-Russian scientific and practical conference of students, graduate students and young scientists with international participation]. Barnaul, 2016. (in Russ.).

Received May 26, 2023

Revised June 5, 2023

Accepted July 7, 2023

For citing: Gromyko D.V., Prusskiy A.I., Tokko O.V., Kotelnikova N.E. *Khimiya Rastitel'nogo Syr'ya*, 2023, no. 4, pp. 69–79. (in Russ.). DOI: 10.14258/jcprm.20230413001.