Электронный дополнительный материал

УДК 532.135

МЕХАНИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ И ГЕЛЕЙ АГАРА, ПРИГОТОВЛЕННЫХ С ИСПОЛЬЗОВАНИЕМ ВОДЫ, ПОДВЕРГНУТОЙ ВОЗДЕЙСТВИЮ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ*

© **Б.П. Шипунов****, **В.И. Маркин**

Алтайский государственный университет, пр. Ленина, 61, Барнаул, 656049 (Россия), e-mail: sbp@mc.asu.ru

^{*} Полный текст статьи опубликован: Шипунов Б.П., Маркин В.И. Механические свойства растворов и гелей агара, приготовленных с использованием воды, подвергнутой воздействию электромагнитного поля // Химия растительного сырья. 2023. №3. С. 101–108. DOI: 10.14258/jcprm.20230313430.

^{**} Автор, с которым следует вести переписку.

Таблица 1. Коэффициенты уравнения Оствальда-де Виля при различных частотах и времени выдержки										
Время выдержки,	0	1	3	6	9	11	21			

Время выдержки, сут.	0		1 3		6		9		11		21			
Частота, МГц	K	n	K	n	K	n	K	n	K	n	K	n	K	n
0	8,7	0,48	8,7	0,48	8,7	0,48	8,7	0,48	8,7	0,48	8,7	0,48	8,7	0,48
30	6,7	0,53	9,9	0,41	9,9	0,35	7,3	0,51	7,4	0,46	5,7	0,49	7,5	0,40
60	9,0	0,42	8,4	0,38	6,5	0,55	5.7	0.57	7,0	0,48	5,8	0,57	5,9	0,68
90	7,0	0,45	6,9	0,55	6,4	0,42	6,3	0,52	7,1	0,47	5,6	0,58	9,9	0,33
110	8,7	0,38	6,0	0,52	9,8	0,43	6,4	0,51	6,8	0,54	6,3	0,58	6,2	0,53
140	8,1	0,46	5,6	0,52	7,2	0,48	5,4	0,56	7,3	0,46	6,4	0,48	4,4	0,71
170	8,3	0,45	6,1	0,56	5,4	0,60	7,2	0,46	7,0	0,50	6,4	0,46	6,4	0,54
200	9,0	0,35	5,3	0,56	6,5	0,49	5,6	0,59	5,3	0,51	5,9	0,54	6,6	0,51

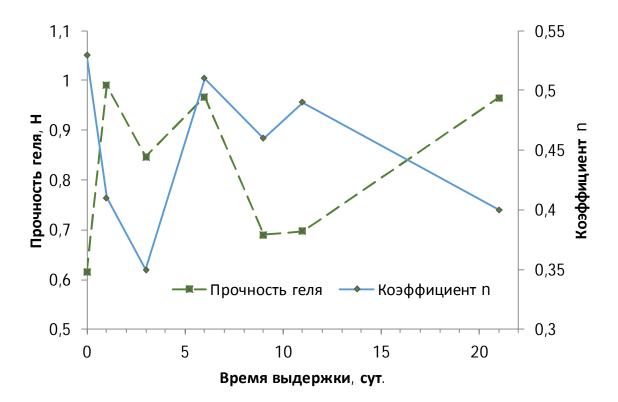


Рис. 1. Зависимость прочности геля и коэффициента n в уравнении Оствальда-де Виля от времени выдержки. Частота 30 М Γ ц

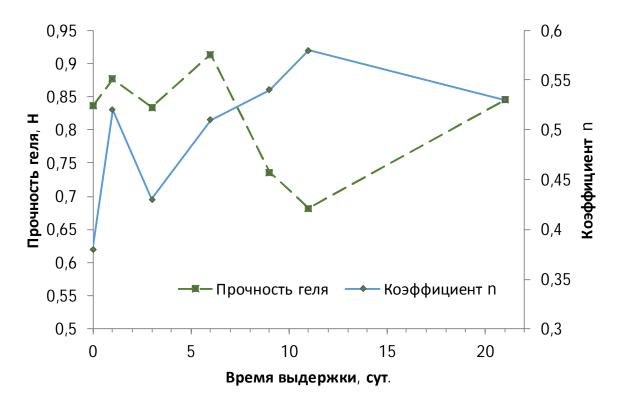


Рис. 2. Зависимость прочности геля и коэффициента n в уравнении Оствальда-де Виля от времени выдержки при. Частота 110 МГц

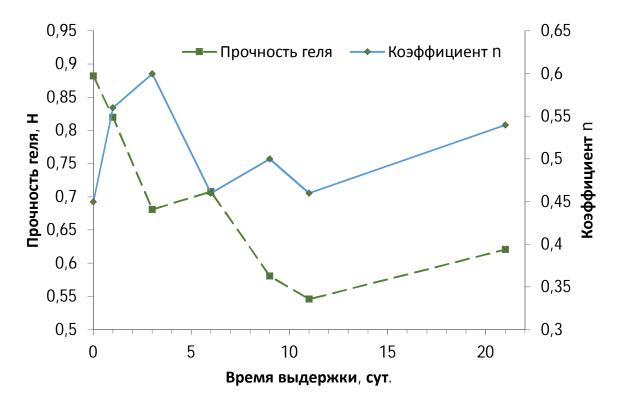


Рис. 3. Зависимость прочности геля и коэффициента n в уравнении Оствальда-де Виля от времени выдержки. Частота 170 МГц

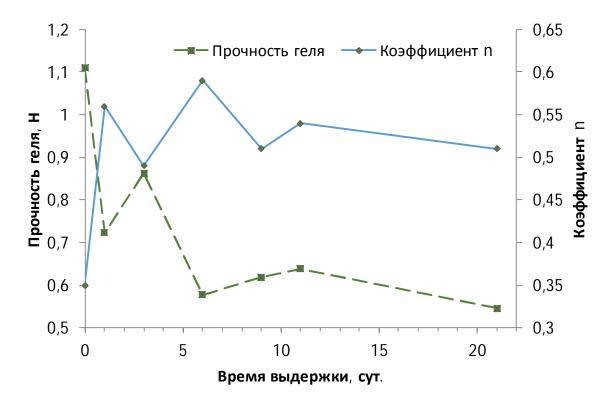


Рис. 4. Зависимость прочности геля и коэффициента n в уравнении Оствальда-де Виля от времени выдержки. Частота 200 МГц