УДК 547.92+547.926.5

ФИТОЭКДИСТЕРОИДЫ РОДОВ SERRATULA L. И KLASEA CASS. (ASTERACEAE): XEMOPA3HOOБРАЗИЕ, МЕТОДЫ ВЫДЕЛЕНИЯ И АНАЛИЗА

© Д.Н. Оленников*, Н.И. Кащенко

Институт общей и экспериментальной биологии СО РАН, ул. Сахьяновой, 6, Улан-Удэ, 670047 (Россия), e-mail: olennikovdn@mail.ru

Serratula L. и Klasea Cass. – два систематически близких рода семейства Asteraceae, содержащих фитоэкдистероиды, группу природных терпеновых соединений, обладающих различной биологической активностью. Начиная с 1970 г. ХХ в., из 13 видов Serratula и 5 видов Klasea было выделено и идентифицировано 76 фитоэкдистероидов. В настоящем обзоре приведены сведения о хеморазнообразии фитоэкдистероидов Serratula и Klasea и их встречаемости в отдельных видах. Показано, что к структурным особенностям фитоэкдистероидов Serratula и Klasea относятся наличие полной боковой цепи у атома C-20, а также число гидроксильных групп от 5 до 7. Среди изученных видов наиболее исследованными являются S. coronata, S. tinctoria и S. chinensis, из которых было выделено 50, 21 и 19 соединений соответственно. Также в обзоре представлена информация о методах экстракции, выделения и анализа фитоэкдистероидов родов Serratula и Klasea. Особое внимание уделено данным о хроматографическом разделении фитоэкдистероидов с использованием колоночной, тонкослойной и высокоэффективной жидкостной хроматографии на различных сорбентах. Информация, представленная в обзоре, демонстрирует перспективность видов Serratula и Klasea, как источников фитоэкдистероидов.

Ключевые слова: Serratula, Klasea, фитоэкдистероиды, хеморазнообразие, выделение, хроматография, ВЭЖХ.

Исследование выполнено при финансовой поддержке проекта СО РАН № 0337-2016-0006.

Введение

Род Serratula L. семейства Asteraceae распространен в широком поясе температурных зон — от Западной Европы до Дальнего Востока, Японии, Кореи и включает в себя в настоящий момент 42 вида. Ареал распространения систематически близкого рода Klasea Cass. отличается более южным распределением с центрами видового разнообразия в горах Центральной Азии, Западного Ирана, Иберийского полуострова и насчитывает более 40 видов. Систематическое положение Serratula и Klasea неоднократно менялось на протяжении двух последних столетий. Еще в 1825 г. А.Н.G. Cassini выдвинул теорию о наличии филогенетических различий между родами Serratula и Klasea [1], которая была опровергнута рядом авторов [2, 3]. На сегодняшний день существование Serratula и Klasea в виде двух отдельных родов подтверждено как на основе морфологических [4], так и молекулярных признаков [5].

В ходе изучения биологической активности *Serratula* и *Klasea* было показано, что их препараты обладают адаптогенной, антистрессорной и анаболической активностью, обусловленной присутствием группы соединений тритерпеновой природы — фитоэкдистероидов [6]. Данные вещества характеризуются высо-

Оленников Даниил Николаевич — доктор фармацевтических наук, ведущий научный сотрудник лаборатории медико-биологических исследований, e-mail: olennikovdn@mail.ru

Кащенко Нина Игоревна – кандидат фармацевтических наук, научный сотрудник лаборатории медикобиологических исследований, e-mail: ninkk@mail.ru

кой биологической активностью, обусловленной их тонизирующим и стимулирующим действием на организм человека [7]. Первые упоминания о присутствии фитоэкдистероидов в представителях родов Serratula и Klasea относятся к 1970 г. к описанию выделения 20-гидроксиэкдизона из S. tinctoria L. (син.

^{*} Автор, с которым следует вести переписку.

S. inermis Poir.)* [8], после чего из различных видов этих родов было выделено около 80 соединений. Учитывая неугасаемый научный интерес к изучению растительных экдистероидов, а также перспективность и практическую значимость видов родов Serratula и Klasea, как источников данной группы соединений, нами осуществлено аналитическое исследование сведений научной литературы, касающихся хеморазнообразия, методов выделения и анализа фитоэкдистероидов родов Serratula и Klasea.

Хеморазнообразие фитоэкдистероидов рода *Serratula и Klasea*. К настоящему времени из видов *Serratula и Klasea* выделено 76 фитоэкдистероидов (1–76) (табл. 1, рис. 1). Основное число соединений обладает структурами с полной боковой цепью (1–30, 34, 38–76); для шести соединений характерны разрывы связи C_{20} – C_{22} (31–33, 35–37).

Наличие гидроксильной группы, свободной или замещенной, по положению C-3 стероидного ядра отмечено для всех соединений. К числу часто встречаемых положений гидроксильной группы относятся также C-2 (74 соединения), C-14 (73), C-20 (64), C-22 (53) и C-25 (47). Достаточно редкими являются компоненты, у которых гидрокси-функция присутствует в положениях C-1 (2 соединения), C-24 (2), C-5 (5) и C-11 (14).

Таблица 1. Фитоэкдистероиды, обнаруженные в видах Serratula и Klasea

No	Название	Литература
1	2	3
1	Абутастерон, 24-эпи-	9
2	Атротостерон С	10
3	Аюгастерон С	11, 12
4	Аюгастерон С, 2-О-ацетил-	13
5	Аюгастерон С, 3-О-ацетил-	13
6	Аюгастерон С, 11-О-ацетил-	13
7	Аюгастерон С, 20,22-моноацетонид-	11, 15
8	Аюгастерон С, 20,22-О-этилиден-	15
9	Аюгастерон С, 22-дегидро-20-дезокси-	16
10	Аюгастерон D	9, 12
11	Витикостерон Е	15, 17, 18
12	Геркестерон	12, 19
13	Изовитексирон	12
14	Инокостерон	18
15	Инокостерон, 26-О-ацетил-	15
16	Интегристерон А	11, 17, 18, 20
17	Дакрихайнанстерон	12, 21
18	Дакрихайнанстерон, 25-гидрокси-	12
19	Джерардиастерон (герардистерон)	22
20	Калонистерон	13
21	Картамостерон	9, 10
22	Коронатастерон	9
23	Макистерон А	12
24	Макистерон С	12, 15, 21, 23
25	Подэкдизон С	10, 12
26	Полиподин В	9, 11, 12, 18, 23
27	Полиподин В, 20,22-моноацетонид-	9
28	Понастерон А	24
29	Понастерон А, 25,26-дидегидро-	10
30	Понастерон A, 22- <i>O</i> -β-D-апиофуранозид	25
31	Постстерон	23
32	Постстерон, 3-эпи-	23
33	Постстерон, 11α-гидрокси-	12, 19
34	Птеростерон	11, 12, 23
35	Рубростерон	23
36	Рубростерон, 3-эпи-	23
37	Рубростерон, 5β-гидрокси-	23
38	Серфуростерон А	26

 $^{^*}$ Номенклатура растительных видов приведена согласно данным The International Plant Name Index (www.ipni.org). Синонимичные названия отдельных видов приведены в таблице 2.

Окончание таблицы 1

1	2	3
39	Серфуростерон В	26
40	Согдистерон	17, 27
41	Стахистерон В	28
42	Стахистерон В, 14,15-α-эпоксид-	28
43	Стахистерон С	10
44	Таксистерон	29
45	Таксистерон, 20,22-дидегидро-	30
46	Таксистерон, 20,22-дидегидро-, 1-гидрокси-	30
47	Туркестерон	12
48	Шидастерон	9, 10
49	Шидастерон, 3-эпи-	25
50	Шидастерон, 24-метилен-	9, 28
51	Шидастерон, (11α)-11-гидрокси-	24
52	Экдизон	11, 12, 17, 18
53	Экдизон, 20,21-дигидрокси-, 22-дезокси-	12
54	Экдизон, 20,21-дидегидро-, 22-дезокси-	16
55	Экдизон, 20,21-дидегидро-, 1-гидрокси-22-дезокси-	16
56	Экдизон, 20-гидрокси-	9, 10–12, 14, 17, 18, 20, 23, 31, 32
57	Экдизон, 20-гидрокси-, 5α-	12
58	Экдизон, 20-гидрокси-, 3-эпи-	12, 29
59	Экдизон, 20-гидрокси-, 3-эпи-22-дезокси-	25
60	Экдизон, 20-гидрокси-, 14-э <i>пи-</i>	12
61	Экдизон, 20-гидрокси-, 22-эпи-	12, 22
62	Экдизон, 20-гидрокси-, 2-дезокси-	18, 20
63	Экдизон, 20-гидрокси-, 22-дезокси-	12
64	Экдизон, 20-гидрокси-, 22-оксо-	23
65	Экдизон, 20-гидрокси-, 2-О-ацетил-	9, 15, 23
66	Экдизон, 20-гидрокси-, 3-О-ацетил-	9, 10, 15, 23
67	Экдизон, 20-гидрокси-, 22-О-ацетил-	15, 23, 29
68	Экдизон, 20-гидрокси-, 2,22-ди-О-ацетил-	23
69	Экдизон, 20-гидрокси-, 3,22-ди-О-ацетил-	23
70	Экдизон, 20-гидрокси-, 20,22-моноацетонид-	9, 11, 12, 14, 15
71	Экдизон, 20-гидрокси-, 2,3:20,22-диацетонид-	11
72	Экдизон, 20-гидрокси-, 20,22-О-этилиден-	15
73	Экдизон, 20-гидрокси-, 24-(2-гидроксиэтил)-	14
74	Экдизон, 20-гидрокси-, 20,22-О-бутилиден-ацеталь-	9, 10
75	Экдизон, 20-гидрокси-, 2-О-β-D-глюкопиранозид	9
76	Экдизон, 20-гидрокси-, 25- <i>О</i> -β-D-глюкопиранозид	9

Кето-группа у С-6 является обязательной структурной особенностью всех фитоэкдистероидов, кроме калонистерона (20) из *S. coronata* [13], у которого в этом положении присутствует гидроксил. Компонент **20** также отличается от других соединений наличием ненасыщенной связи Δ^{5-6} , нехарактерной для других соединений, обладающих ненасыщенной связью Δ^{7-8} . Присутствие дегидро-функции Δ^{9-11} выявлено у геркестерона (12), дакрихайнанстерона (17) и его 25-гидрокси-производного (18), а стахистерон В (41) обладает ненасыщенной связью Δ^{14-15} .

Наличие большого числа гидроксильных групп в структурах фитоэкдистероидов указывает на возможности для синтеза в растениях конъюгатов, эфиров и других производных. Образование сложных моноэфиров с уксусной кислотой было выявлено для аюгастерона С (3) по положениям С-2 (4), С-3 (5) и С-11 (6), инокостерона (14) по положению С-26 (15), а также для 20-гидроксиэкдизона (56) по положениям С-2 (65), С-3 (66), С-22 (67) и С-25 (11). Два диацетата 20-гидроксиэкдизона, выделенные из *S. tinctoria*, содержат ацильные группы при С-2,-22 (68) и С-3,-22 (69) [23].

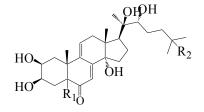
Существование 1,2-диольных фрагментов в структурах аюгастерона С (**3**), полиподина В (**26**) и 20-гидроксиэкдизона (**56**) при C_2 — C_3 и C_{20} — C_{22} делает возможным существование изопропилиден-кеталей в виде моноацетонидов **7**, **27** и **70** и диацетонида **71**, обнаруженных в *S. chinensis* [9], *S. coronata* [11, 12, 15] и *S. strangulata* [14]. Этилиден-замещенные аюгастерон С (**8**) и 20-гидроксиэкдизон (**72**) были выявлены как компоненты *S. tinctoria* [15], а 20,22-O-бутилиден-ацеталь 20-гидроксиэкдизона (**74**) – в *S. chinensis* [9, 10].

$$R_8$$
 R_9 R_{10} R_8 R_9 R_{10} $R_{$

<u>№</u>	R ₁	R ₂	R_3	R ₄	R_5	R_6	R ₇	R ₈	R ₉	R ₁₀	R ₁₁	R ₁₂
1	H	■OH	⋖ OH	■H	Н	⊲OH	⋖ CH ₃	■ OH	⊲OH	 ■OH	OH	CH ₃
2	Н	⋖ ОН	⋖ ОН	∢ Н	⊲OH	⊲OH	⋖ CH ₃	⋖ ОН	⊲OH	$=CH_2$	ОН	CH_3
3	Н	⋖ ОН	⋖ ОН	∢ Н	⊲OH	⊲OH	⋖ CH ₃	⋖ ОН	⊲OH	Н	Н	CH_3
4	Н	⋖ Ac	⋖ ОН	∢ Н	⊲OH	⊲OH	⋖ CH ₃	⋖ ОН	⊲OH	Н	Н	CH_3
5	H	⋖ OH	⋖ Ac	∢ Н	⊲OH	⊲OH	⋖ CH ₃	⋖ ОН	⊲OH	Н	Н	CH_3
6	H	⋖ OH	⋖ ОН	∢ Н	⊲Ac	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	Н	Н	CH_3
7	H	⋖ OH	⋖ ОН	∢ Н	⊲OH	⊲OH	$\blacktriangleleft \text{CH}_3$		A	Н	Н	CH_3
8	H	⋖ OH	⋖ ОН	∢ Н	⊲OH	⊲OH	$\blacktriangleleft \mathrm{CH}_3$		В	Н	Н	CH_3
9	Н	⋖ OH	⋖ OH	∢ Н	⊲OH	⊲OH	$\blacktriangleleft CH_3$	Н	C=O	Н	Н	CH_3
11	Н	⋖ OH	⋖ ОН	∢ Н	Н	⊲OH	$\blacktriangleleft CH_3$	⋖ ОН	⊲OH	Н	Ac	CH_3
13	Н	⋖ OH	⋖ OH	∢ Н	⊲OH	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	Н	Н	$=CH_2$
14	Н	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	Н	Н	CH ₂ OH
15	Н	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	Н	Н	Ac
16	⋖ ОН	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	Н	OH	CH_3
22	Н	Н	⊲OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	Н	OH	CH_3
23	Н	⋖ OH	⋖ OH	∢ H	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	$\blacktriangleleft CH_3$	OH	CH_3
24	Н	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	C_2H_5	OH	CH_3
25	Н	⋖ OH	⋖ OH	∢ H	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	Н	OH	CH ₂ OH
26	Н	⋖ OH	⋖ OH	⋖ OH	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	Н	OH	CH_3
27	Н	⋖ OH	⋖ OH	⋖ OH	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$		A	Н	OH	CH_3
28	Н	⋖ OH	⋖ OH	∢ H	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	Н	Н	CH_3
29	Н	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	Н	Н	$=CH_2$
30	Н	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲ OApi	Н	Н	CH_3
34	Н	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ OH	⊲OH	⊲OH	Н	CH_3
38	Н	⋖ OH	⋖ OH	∢ H	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$		C	Н	OH	Н
39	Н	⋖ OH	⋖ OH	∢ H	⊲OH	⊲OH	$\blacktriangleleft \mathrm{CH}_3$		C	Н	Н	CH_3
40	Н	⋖ OH	⋖ OH	∢ H	Н	⊲OH	⋖ CH ₂ OH	⋖ ОН	⊲OH	Н	OH	CH_3
44	Η	⋖ OH	⋖ OH	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	Η	Н	OH	CH_3
47	Н	⋖ OH	⋖ OH	∢ Н	⊲OH	⊲OH	$\blacktriangleleft CH_3$	⋖ ОН	⊲OH	Н	OH	CH_3
52	H	⋖ OH	◆ ОН	∢ Н	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	Н	⊲OH	H	ОН	CH_3
56	H	⋖ OH	⋖ ОН	∢ Η	Н	⊲OH	$\blacktriangleleft \mathrm{CH}_3$	⋖ ОН	⊲OH	H	ОН	CH_3
57	Н	⋖ ОН	⋖ ОН	⊲H	Н	⊲OH	⋖ CH ₃	⋖ ОН	⊲OH	Н	OH	CH_3
58	H	⋖ ОН	⊲OH	∢ Η	Н	⊲OH	⋖ CH ₃	⋖ ОН	⊲OH	Н	OH	CH_3
59	Н	⋖ ОН	⊲OH	∢ Η	Н	⊲OH	⋖ CH ₃	⋖ ОН	Н	Н	OH	CH_3
60	Н	◀ OH	◆ OH	∢Η	Н	⋖ ОН	⋖ CH ₃	⋖ ОН	⊲ OH	H	OH	CH_3
61	Н	⋖ ОН	⋖ ОН	∢Η	Н	⊲OH	⋖ CH ₃	◆ OH	⋖ ОН	H	OH	CH ₃
62	Н	Н	⋖ ОН	∢Η	Н	dOH	⋖ CH ₃	◆ OH	⊲OH	H	OH	CH ₃
63	H	◆ OH	⋖ ОН	∢H	Н	⊲OH	⋖ CH ₃	◆ OH	H	Н	OH	CH ₃
64	Н	◆ OH	⋖ OH	∢ H	Н	⊲OH	⋖ CH ₃	◆ OH	C=O	Н	OH	CH ₃
65	Н	⋖ Ac	⋖ OH	∢ H	Н	⊲OH	⋖ CH ₃	◆ OH	⊲OH	Н	OH	CH ₃
66	Н	⋖ ОН	⋖ Ac	∢ H	Н	⊲OH	⋖ CH ₃	◆ OH	⊲OH	Н	OH	CH ₃
67	Н	⋖ ОН	⋖ ОН	∢ H	Н	⊲OH	⋖ CH ₃	◆ OH	⊲ Ac	H	OH	CH ₃
68 60	H H	∢Ac ∢OH	◆ OH	∢ H ∢ H	H H	⊲OH ⊲OH	◆CH ₃	■ OH	⊲ Ac ⊲ Ac	Н	OH OH	CH ₃
69 70	н Н	▼ OH	 Ac AC		н Н		◆CH ₃ ◆CH ₃	⋖ OH		H H	ОН	CH ₃
70 71	н Н	⊲ OH D	◆ ОН	∢ H H		⊲OH ⊲ CH	▼ CH ₃		A	н Н	ОН ОН	CH ₃
71 72	н Н	u HO∓	⋖ ОН	н ∢ Н	⊲OH H	CH ₃ OH	⋖ CH ₃		A B	н Н		CH ₃
74	н Н	▼ OH	■ OH		н Н	⊲ OH ⊲ OH	$\blacktriangleleft CH_3$ $\blacktriangleleft CH_3$		B E	н Н	OH OH	CH ₃ CH ₃
74 75	н Н	▼ OH ▼ OGlc	■ OH	∢ H ∢ H	H H	⊲ OH ⊲ OH	$\triangleleft CH_3$ $\triangleleft CH_3$	⋖ ОН	L ⊲OH	Н	ОН	CH ₃ CH ₃
76	Н	◆ OH	▼ OH	₹H	Н	⊲ OH	$\triangleleft CH_3$	Ч ОН	⊲ OH	H	OGle	CH ₃
70	11	¬ OII	¬ O11	411	11	√ O11	¬ C113	¬ O11	√ O11	11	Odic	C113

Рис. 1. Структуры фитоэкдистероидов **1–76**, выделенных из видов Serratula и Klasea

$$\begin{array}{c} \text{OH} \\ \text{R}_{3} \\ \text{OH} \\ \text{OH} \end{array}$$


№	R_1	R_2	R_3	R_4
10	⋖ OH	⋖ OH	Н	F
21	⋖ OH	Н	Н	G
48	⋖ OH	Н	Н	F
49	⊲OH	Н	Н	H
50	⋖ OH	Н	Н	I
51	⋖ OH	Н	⊲OH	F

$$\begin{array}{c|c} R_2 & R_3 \\ HO & HO \\ HO & HO \end{array}$$

$N_{\underline{0}}$	R_1	R_2	R_3	R_4
19	Н	⊲ CH ₃	⋖ OH	⊲OH
53	H	⊲ CH ₂ OH	⋖ OH	Н
54	H	$= CH_2$	Н	Н
55	⋖ OH	$= CH_2$	Н	Н

20

но но он он

№	R_1	R_2
12	⋖ OH	OH
17	◀H	Н
18	◀H	OH

$$\begin{array}{c|c} R_3 & R_4 \\ \hline HO & OH \\ \hline R_1 & R_{2O} \end{array}$$

N_{0}	R_1	R_2	R_3	R ₄
31	⋖ OH	Н	Н	⋖ COCH ₃
32	⊲OH	Н	H	$\blacktriangleleft COCH_3$
33	⋖ OH	Н	⊲OH	$\blacktriangleleft COCH_3$
35	⋖ OH	H	H	C=O
36	⊲OH	Н	H	C=O
37	⋖ ОН	OH	Н	C=O

41

	43 Замес	тители	
F	G	Н	I
0	OH O	Omm	

Рис. 1. Структуры фитоэкдистероидов **1–76**, выделенных из видов *Serratula* и *Klasea* (окончание)

В боковой цепи некоторых соединений может присутствовать фурановое кольцо, присоединенное через этилиденовую группировку к диольному фрагменту C_{20} – C_{22} , как у серфустерона A (38) и серфустерона B (39) из S. coronata [26]. У аюгастерона D (10), шидастерона (48) и его производных 49, 50 и 51 из S. chinensis [9, 10] и S. coronata [24, 25, 28] фурановый фрагмент присутствует у C-22, в то время как у картамостерона (21) из S. chinensis – у C-24 [9, 10].

Единственный 14,15-эпоксид стахистерона В (42) был обнаружен в S. coronata [28].

Гликозиды фитоэкдистероидов остаются для родов *Serratula* и *Klasea* редкой группой производных. Известно о выделении 22-*O*-апиофуранозида понастерона A (**30**) из *S. coronata* [25] и 2-*O*- (**75**) и 25-*O*-глюкопиранозида 20-гидроксиэкдизона (**26**) из *S. chinensis* [9].

В целом, следует отметить, что для фитоэкдистероидов *Serratula* и *Klasea* характерно наличие полной боковой цепи и большого числа гидроксильных групп (5–7) как в стероидном ядре, так и в боковой цепи.

Видовое распределение фитоэкдистероидов родов Serratula и Klasea. Данные о наличии фитоэкдистероидов в роде Serratula известны для 13 видов, а также 5 видов рода Klasea. Сведения литературы о присутствии фитоэкдистероидов в видах Serratula указывают на то, что S. coronata является наиболее исследуемым видом, в котором обнаружено 50 соединений (табл. 2).

Вероятной причиной подобного интереса является сырьевая доступность вида, широко встречающегося на территории Европы, Европейской России, Сибири и Дальнего Востока. Из *S. tinctoria* и *S. chinensis* выделено 21 и 19 соединений, соответственно. Для основного большинства исследованных видов информация о присутствии экдистероидов ограничена сведениями о наличии 20-гидроксиэкдизона (56) и еще 2–3 соединений. Подобный объем информации не может считаться достаточными для понимания биологических функций данных соединений для растения или выявления хемотаксономических особенностей их накопления в пределах рода, в связи с чем необходимо осуществление дополнительных исследований в этой области.

Рассматривая распределение отдельных соединений среди видов рода *Serratula*, можно отметить, что наиболее часто встречаемым является 20-гидроксиэкдизон (**56**), обнаруженный в 13 видах. Витикостерон Е (**11**) был выявлен в 5 видах, а интегристерон А (**16**), полиподин В (**26**) и 20,22-моноацетонид 20-гидроксиэкдизона (**70**) – в трех видах.

Таблица 2. Встречаемость фитоэкдистероидов 1-76 в отдельных видах Serratula и Klasea

Растительный вид [*]	Общее число соединений: номер соединения
	Род Serratula L.
S. algida Iljin	1: 56 [17]
S. cardunculus (Pall.) Schischk.	1: 56 [18]
S. centauroides L. (син. S. komarovii Iljin, S.	4: 11 , 16 , 56 , 62 [17, 20]
mongolica Kitag., S. yamatsutana Kitag.)	4. 11, 10, 30, 02 [17, 20]
S. chinensis S.Moore	19: 1 , 2 , 10 , 21 , 22 , 25–27 , 29 , 43 , 48 , 50 , 56 , 65 , 66 , 70 , 74 , 75 , 76
S. coriacea Fisch. & C.A.Mey.	1: 56 [18]
S. coronata L. (син. S. manshurica Kitag., S. martinii	50: 3–13, 15–18, 20, 22–24, 26, 28, 30, 33, 34, 38, 39, 41, 42, 44–47,
Vaniot, S. wolffii Andrae)	49–61, 63, 67, 70–72 [11–13, 15–17, 19, 21, 24–26, 28–30, 33]
S. erucifolia (L.) Boriss.	1: 56 [18]
S. kirghisorum Iljin	1: 56 [31]
S. lyratifolia Schrenk (син. S. modesti Boriss., S.	
tianschanica Saposhn. & Nikitina)	1: 56 [32]
S. procumbens Regel. (син. S. flexicaulis Rupr.)	2: 56 , 11 [17]
S. sogdiana Bunge	3: 11 , 40 , 56 [27, 34, 35]
S. strangulata Iljin	4: 3, 56, 70, 73 [14]
S. tinctoria L. (син. S. inermis Poir.)	21: 11 , 16 , 19 , 24–26 , 31 , 32 , 34–37 , 56 , 61 , 62 , 64–69 [8, 18, 22, 23]
]	Род <i>Klasea</i> Cass.
K. erucifolia (L.) Greuter & Wagenitz (син. S. xeranthemoides M.Bieb.)	2: 16, 56 [36]
K. quinquefolia (Willd.) Greuter & Wagenitz (син. S. quinquefolia M.Bieb. ex Willd.)	3: 14 , 26 , 56 [17, 37]
K. radiata (Waldst. & Kit.) Á.Löve & D.Löve (син. S. radiata (Waldst. & Kit.) М.Віев.)	3: 14 , 52 , 56 [18]
K. radiata subsp. gmelinii (Tausch) L.Martins (син. S. gmelinii Tausch)	3: 14, 52, 56 [18]
K. lycopifolia (Vill.) Á.Löve & D.Löve (син. S. lycopifolia (Vill.) A.Kern.)	3: 14 , 52 , 56 [18]

син. - синоним.

Сведения о хеморазнообразии фитоэкдистероидов рода *Klasea* ограничены данными о присутствии **56**, обнаруженного в пяти видах, а также **14** и **52**, выявленного в четырех и трех видах, соответственно. В *K. erucifolia* также детектировано наличие **16** [36] и в *K. quinquefolia* – **26** [17, 37].

Для выделения фитоэкдистероидов различными исследователями применяется комплекс экстракционно-хроматографических процедур, позволяющий добиться оптимального разделения и получения целевых соединений необходимой степени чистоты.

Методы экстракции фитоэкдистероидов. Основная процедура выделения фитоэкдистероидов Serratula и Klasea включает этапы экстракции растительного сырья, с последующей жидкофазной/твердофазной экстракцией и/или очисткой полученного извлечения с целью получения целевых обогащенных фракций для которых осуществляется хроматографическое разделение.

Экстракция проводится как из надземных, так и из подземных частей растений (табл. 3). Основными экстрагентами являются низкомолекулярные спирты (этанол, метанол), а также вода. В редких случаях извлечение проводят из свежеотжатого сока растения для предотвращения термической деструкции соединений [13, 15, 29, 37]. В зависимости от поставленных задач, температура экстракции может варьировать от 0 °C [20] до температуры кипения экстрагента [24, 28, 34, 35]. После получения извлечения и дополнительного концентрирования водный остаток подвергают обработке органическими растворителями (петролейный эфир, гексан) для удаления мешающих компонентов в основном липофильной природы. Жидкофазная экстракция целевых соединений осуществляется, как правило, этилацетатом или *н*-бутанолом.

Таблица 3. Методы экстракции фитоэкдистероидов Serratula и Klasea

Растительный вид	Условия экстракции [*]	Соединения
S. centauroides	С: н.ч., п.ч. → Э: 70% EtOH (1:25–1:50; 0 °C; 30 дней) → конц. → ТФЭ → КХ	16 , 52 , 56 , 62 [20]
S. chinensis	С: п.ч. → Э: 95% EtOH (20 °C) → конц. → ЖФЭ: ПЭ, СНС $_3$, ВиОН → ВиОН-экстр. KX Diaion HP-20 → KX	29 , 43 , 65 [10]
	С: листья → Э: H_2O (1:10; 50 °C) → конц. → ЖФЭ: EtOAc—MeOH (4:1) конц. → KX	3 , 17 , 24 [21]
	С: н.ч. → Э: EtOH (1:6) → конц. → ЖФЭ: CHCl ₃ , BuOH → BuOH-экстр. KX	7, 16, 26, 34, 52, 56, 70, 71 [11]
S. coronata	Сок: н.ч. \rightarrow конц. \rightarrow ЖФЭ: EtOAc \rightarrow EtOAc-экстр. KX	4–6, 20 [13]; 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15]; 3, 26, 52, 56, 58, 62, 67 [29]
	С: н.ч. → Э: MeOH (1:10; 20 °C) → конц. → раств. MeOH → $+$ Me ₂ CO → фильтр. → конц. → раств. MeOH → $+$ Me ₂ CO → фильтр. → конц. → раств. 50% MeOH → $+$ MΦЭ: гексан → водный слой конц. → $+$ KX	3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12]
	$C: п.ч. \to MeOH \to конц. \to KX$	9, 53, 55 [16]; 38, 39 [27]; 28, 51 [23]; 30, 49, 59 [26]; 41, 42, 50 [25]
S. sogdiana	С: цветки \to Э: EtOH (кип.) \to конц. \to КХ С: листья \to Э: MeOH (1:6; кип.) \to конц. \to ЖФЭ: ПЭ,	56 [34] 11 [35]; 40 [24]
3	BuOH → BuOH-экстр. KX	[1],[-]
	С: н.ч. \rightarrow Э: МеОН (кип.; 24 ч) \rightarrow конц. \rightarrow раств. 50% МеОН \rightarrow ЖФЭ: бензол \rightarrow бензольный экстр. ЖФЭ: 50% МеОН \rightarrow	19, 56, 61 [22]
S. tinctoria	конц. \rightarrow раств. MeOH \rightarrow +Me ₂ CO \rightarrow фильтр. \rightarrow конц. \rightarrow KX C: п.ч. \rightarrow Э: MeOH (1:17; кип.) \rightarrow конц. \rightarrow раств. 50% MeOH (1:5) \rightarrow ЖФЭ: бензол \rightarrow бензольный экстр. ЖФЭ: 50% MeOH \rightarrow MeOH \rightarrow KX	24 , 26 , 31 , 32 , 34–36 , 56 , 64–69 [23]
K. erucifolia	С: цветки → Э: MeOH (20 °C; 2 сут.) → конц. → ЖФЭ: гексан, ВиОН → ВиОН-экстр. КХ	16, 56 [36]
K. quinquefolia	Сок: н.ч. \rightarrow конц. \rightarrow ЖФЭ: EtOAc \rightarrow EtOAc-экстр. KX	26 , 56 [37]

^{*} С – сырье, ЖФЭ – жидкофазная экстракция, конц. – концентрирование, КХ – колоночная хроматография, н.ч. – надземная часть, п.ч. – подземная часть, ПЭ – петролейный эфир, раств. – растворение, ТФЭ – твердофазная экстракция, Э – экстрагент, ВиОН – бутанол, EtOAc – этилацетат, EtOH – этанол, MeOH – метанол, Me₂CO – ацетон.

В редких случаях применяют многостадийные схемы очистки растительного извлечения, включающие многократное осаждение балластных компонентов из метанольного раствора с помощью ацетона [12]. В качестве дополнительного этапа очистки может выступать процедура жидкофазной экстракции фитоэкдитероидов бензолом с последующей реэкстракцией органической фазы 50% метанолом [23]. В качестве финальной стадии процесса очистки допускается применение этапов твердофазной экстракции [20] или ионного обмена [10], приводящих к лучшим результатам.

Хроматографическое разделение фитоэкдистероидов *Serratula* и *Klasea*. Для получения индивидуальных соединений из группы экдистероидов недостаточно использовать экстракционные процедуры. Обязательным этапом является хроматографическое разделение, различные варианты которого широко использовались в ходе исследования растительных видов родов *Serratula* и *Klasea*.

Колоночная хроматография (КХ), как основной метод разделения, проводится на сорбентах различной природы, включая оксид алюминия, нормально- и обращенно-фазовый силикагель, полиамид и Сефадекс LH-20 (табл. 4). Для разделения на оксиде алюминия часто применяют двухкомпонентые системы растворителей, представляющие собой смеси хлороформа и метанола/этанола, и реже трехкомпонентные системы, включающие этилацетат и низкомолекулярные спирты. Силикагель, как наиболее часто применяемый сорбент для КХ, допускает элюирование смесями хлороформа или дихлорэтана со спиртами, а также водно-метанольными системами растворителей. Для осуществления разделения на эпоксимодифицированном декстрановом носителе Сефадекс LH-20 применяют однокомпонентные (метанол), двухкомпонентные (метанол-этилацетат) и трехкомпонентные системы (этилацетат-метанол-вода). Возможность реализации градиентного элюирования водно-спиртовыми смесями является отличительной особенностью КХ на полиамиде и обращено-фазовом силикагеле.

Тонкослойная хроматография (TCX), являясь как методом детекции (анализа), так и методом разделения, широко применяется для выделения фитоэкдистероидов Serratula и Klasea. Известно об использовании вариантов TCX на нормально-фазовом (НФ) силикагеле, а также его модификациях в виде обращеннофазовых (ОФ) и циано-дериватизованных аналогов (Ц). Состав систем растворителей, используемых на НФ-силикагеле близок к таковым, применяемым в КХ, включая смеси хлороформа со спиртами, а также сложные щелочные системы, содержащие раствор аммиака, позволяющие осуществить более селективное разделение отдельных компонентов. Для TCX на ОФ-силикагеле используются двухкомпонентые системы, представляющие собой смеси с водой метанола, ацетонитрила и тетрагидрофурана, в то время как для TCX на Ц-силикагеле могут использоваться смеси гексана и ацетона.

Близость физико-химических и хроматографических свойств фитоэкдистероидов *Serratula*, затрудняющих процесс выделения отдельных соединений, привела к необходимости применения различных вариантов ВЭЖХ, в том числе ее препаративного варианта. Нормально-фазовый сорбент Zorbax-SIL хорошо зарекомендовал себя в процессе разделения фитоэкдистероидов *S. tinctoria* [22, 23] и *S. coronata* [12, 15, 16, 25–27] (табл. 5).

Использование изократического режима для систем растворителей, содержащих дихлорэтан/циклогексан в смеси с водными растворами изопропанола, позволило добиться удовлетворительного разделения более 30 соединений.

Традиционные варианты препаративной ВЭЖХ осуществлялись на ОФ-силикагеле, среди которых колонка Zorbax SB- C_{18} применялась наиболее часто, как инструмент для выделения фитоэкдистероидов *S. coronata* [12, 15, 16, 25–27]. Также необходимо отметить положительные результаты, полученные при использовании колонок Diasorb 130 C_{16} T [21], Reprosil-Pur C_{18} -AQ [13] и Separon C_{18} [29, 37]. Традиционным для данного варианта препаративной ВЭЖХ является использование смесей метанола и ацетонитрила с водой в качестве элюентов.

Осуществление аналитического варианта ВЭЖХ было реализовано на колонках с нормальной (Zorbax-SIL) [12, 15, 28] и обращенной фазой (Separon C_{18} , Spherisorb 5ODS2, Zorbax ODS) [12, 20, 28, 29], применяя в качестве элюентов для Н Φ -силикагеля смеси циклогексана/дихлорэтана/изооктана с изопропанолом, а для О Φ -силикагеля – смеси метанола/ацетонитрила с водой.

Представленные сведения демонстрируют широту вариантов для осуществления хроматографического разделения фитоэкдистероидов *Serratula* и *Klasea*, что объясняет большое число соединений, выделенных из различных представителей родов.

Таблица 4. Условия хроматографического разделения (колоночная и тонкослойная хроматография) фитоэкдистероидов Serratula и Klasea

TΦУ/MeCN- H_2O (35 : 65), TΓΦ- H_2O (45 : 55) 52 , 53 , 56 - 60 , 61 , 63 , 70 [12]		экдистероидов Serratula и Klasea		
CHCI ₂ -MeOH (9: 1) CHCI ₂ -MeOH (9: 1) CHCI ₃ -MeOH (9: 1) CHCI ₄ -MeOH (9: 1, 15: 1) Si 1, 17, 24 [21] Si 1, 18, 23, 24, 26, 33, 34, 47, 26, 25, 25, 36, 64, 61, 63, 70 [12] CHCI ₄ -MeOH (9: 10, 80: 10: 2) EIOA-EIOH-H ₂ O (85: 10: 5) CHCI ₄ -MeOH (9: 10) CHCI ₄ -MeOH (0: 1) CHCI ₄ -MeOH (10: 1) CHCI ₄ -MeOH (9: 10, 85: 10) CHC	Сорбент	* * * * * * * * * * * * * * * * * * * *	Соединения	
CHCI_MeOH (10:1)				
CHClp-MeOH (2: 1, 15: 1) 7, 16, 26, 34, 52, 55, 70, 71 [11] 3, 17, 24 [21] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 24, 26, 31, 32, 34-36, 56, 64-69 [28] EIOAe-MeOH-H ₂ O (8: 0: 10: 5) 26, 61 [23] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 24, 26, 31, 32, 34-36, 56, 64-69 [2				
AlgO ₃ CHCl3—MeOH (95: 5, 90: 10), CH2Cl3—EiOH (90: 10, 85: 15, 80: 20, 70: 30; CHCl3—EiOH (90: 10, 85: 20, 70: 30; CHCl3—EiOH (90: 10) EICOA=EiOH H3, G (85: 10: 5) CHCl3—MeOH H4, G (85: 10: 5) CHCl3—MeOH (90: 10) CHCl3—MeOH (90: 10) CHCl3—MeOH (20: 1) CHCl3—MeOH (20: 1) CHCl3—MeOH (20: 1) CHCl3—MeOH (10: 1) CHCl3—MeOH (25: 1), CHCl3—MeOH (10: 1→5: 1) CHCl3—MeOH (90: 10), 80: 20, 70: 30: 50: 50 CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) CH3—Ei-BOH (90: 10, 80: 20, 70: 30: 50: 50) EI-OA=—MeOH—H3—G (50: 50), MeOH Algo (10) (10) (10) (10) (10) (10) (10) (10)			16 , 56 [36]	
Al ₂ O ₃ CHCli,→MeOH (95 : 5; 90 : 10); CH ₂ Cli+EiOH (90 : 10; 85 : 15; 80 : 20; 70 : 30); CHCli,→EiOH (90 : 10; 80 : 20; 70 : 30); CHCli,→EiOH (90 : 10; 80 : 20; 70 : 30); CHCli,→EiOH (90 : 10)		CHCl ₃ –MeOH (2 : 1, 15 : 1)	7 , 16 , 26 , 34 , 52 , 56 , 70 , 71 [11]	
85 : 15, 80 : 20, 70 : 30); CHCl_EIOH (90 : 10, 80 : 20; 70 : 30, 65 : 35, 66 : 40)		CHCl ₃ –MeOH	3 , 17 , 24 [21]	
85 : 15; 80 : 20; 70 : 30); CHCl ₂ -HOH (90 : 10; 80 : 20; 70 : 30, 65 : 35; 60 · 40; 66; 63 · 70; [12] (70 : 30, 65 : 35; 60 · 40); 66; 63 · 70; [12] (70 : 30, 65 : 35; 60 · 40); 66; 63 · 70; [12] (70 : 30, 65); 61; 61; 62] (70 : 30, 70); 62; 63; 63; 64; 64; 65; 66; 64 · 69; [28] (70 : 30, 70); 63; 64; 64; 64; 64; 64; 64; 64; 64; 64; 64	Al_2O_3	CHCl ₃ -MeOH (95 : 5; 90 : 10); CH ₂ Cl ₂ -EtOH (90 : 10;	2 10 12 12 15 10 22 24 26 22 24 15	
70 : 30, 65 : 35, 60 : 40) EIOAc-EIOH-H ₂ O (80 : 10 : 2) 24, 26, 31, 32, 34-36, 56, 64-69 [28] EIOAc-McOH-H ₂ O (85 : 10 : 5) 19, 56, 61 [23] 29, 43, 65 [10] 19, 56, 61 [23] 29, 43, 65 [10] 19, 56, 61 [23] 29, 43, 65 [10] 19, 56, 61 [23]				
EIOAc-EIOH-IL ₂ O (80 : 10 : 2) 24, 26, 31, 32, 34-36, 56, 64-69 [28] EIOAc-MoOH-IL ₂ O (85 : 10 : 5) 19, 56, 61 [23] CHCl ₂ -HeOH (90 : 10) 56 [34] CHCl ₂ -HeOH (90 : 10) 4-6, 20 [16] CHCl ₂ -HeOH (10 : 1) 20, 43, 65 [10] 4-6, 20 [16] CHCl ₂ -HeOH (10 : 1) 20, 56 [37] 3, 26, 52, 56, 58, 62, 67 [29] CHCl ₂ -HeOH (25 : 1, 9 : 1, 4 : 1); CHCl ₂ -HeOH-H ₂ O (4 : 1 : 0.1) 3, 26, 52, 56, 58, 62, 67 [79] 7, 81, 11, 15, 24, 27, 65-67, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 71 [11] 11, 52, 42, 76, 65-67, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 71 [11] 11, 52, 42, 76, 65-67, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 71 [11] 16, 56 [36] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 19, 56, 61 [23] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 19, 56, 61 [23] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 19, 56, 61 [23] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 19, 56, 61 [23] 24, 26, 31, 32, 34-36, 56, 64-69 [28] 19, 56, 61 [23] 24, 26, 31, 32, 34-36, 56, 64-69 [28			52, 53, 56-60, 61, 63, 70 [12]	
EIOAe-MeOH-H ₂ O (85 : 10 : 5)			24. 26. 31. 32. 34–36. 56. 64–69 [28]	
СНСІ,—КОН (90 : 10) СНСІ,—МЕОН (90 : 10) СНСІ,—МЕОН (20 : 1) СНСІ,—МЕОН (20 : 1) СНСІ,—МЕОН (51 : 1) СНСІ,—МЕОН (51 : 1) СНСІ,—МЕОН (52 : 1), СНСІ,—МЕОН (10 : 1→5 : 1) СНСІ,—МЕОН (25 : 1), СНСІ,—МЕОН (10 : 1→5 : 1) СНСІ,—МЕОН (25 : 1), СНСІ,—МЕОН (10 : 1→5 : 1) СНСІ,—МЕОН (25 : 1), СНСІ,—МЕОН (10 : 1→5 : 1) СНСІ,—МЕОН (90 : 10, 80 : 20, 70 : 30, 50 : 50) СН ₂ СІ ₂ -ЕІОН (90 : 10, 80 : 20, 70 : 30, 50 : 50) СН ₂ СІ ₂ -ЕІОН (90 : 10, 80 : 20, 70 : 30, 50 : 50) СН ₂ СІ ₂ -ЕІОН (90 : 10, 85 : 15) ЕІОАС—МЕОН Н ₂ О (35 : 65) МЕОН—Н ₂ О (35 : 65) МЕОН—Н ₂ О (30 : 55) МЕОН—Н ₂ О (30 : 50) МЕОН—Н ₂ О (30 : 70 → 60 : 40) Коуазії С _В МЕОН—Н ₂ О (30 : 70 → 60 : 40) Коуазії С _В СНСІ ₂ —МЕОН (8 : 1) СНС				
СНСІ]МеОН (90 : 10) СНСІ]МеОН (20 : 1) СНСІ]МеОН (20 : 1) СНСІ]МеОН (10 : 1) СНСІ]МеОН (10 : 1) СНСІ]МеОН (25 : 1), СНСІ]МеОН (10 : 1→5 : 1) СНСІ]МеОН (25 : 1), СНСІ]МеОН (10 : 1→5 : 1) СНСІ]МеОН (25 : 1), СНСІ]МеОН (10 : 1→5 : 1) СПСІ]МеОН (25 : 1), СНСІ]МеОН (10 : 1→5 : 1) СПСІ]МеОН (25 : 1), СНСІ]МеОН (10 : 1→5 : 1) СПСІ]МеОН (25 : 1), СНСІ]МеОН (10 : 1→5 : 1) СПСІ]МеОН (25 : 1), СНСІ]		= \ /		
СПСI,—MeOH (10: 1) СПСI,—MeOH (10: 1) СПСI,—MeOH (25: 1), СПСI,—MeOH (10: 1→5: 1) СПСI,—EIOH (90: 10, 80: 20, 70: 30, 50: 50) СП ₂ ,—EIOH (90: 10, 80: 20, 70: 30, 50: 50) СП ₂ ,—EIOH (90: 10, 80: 20, 70: 30, 50: 50) СП ₂ ,—EIOH (90: 10, 80: 20, 70: 30, 50: 50) СП ₂ ,—EIOH (90: 10, 80: 10, 80: 10) СПС ₂ ,—EIOH (90: 10, 80: 10, 80: 10) СПС ₂ ,—EIOH (90: 10, 80: 10, 10) МеОН—H ₂ O (50: 40) МеОН—H ₂ O (50: 40) МеОН—H ₂ O (50: 40) МеОН—H ₂ O (50: 50), меОН Полиамид			<u> </u>	
СНСІ3-МеОН (10 · 1) (2 · 5 · 6 · 3 · 7) (11 · 1) (11 ·				
CHCl3-MeOH (25:1), CHCl3-MeOH (10:1—5:1) 3, 26, 52, 56, 58, 62, 67 [29] 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 74 [15] 7, 16, 26, 34, 52, 56, 64-69 [28] 7, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27				
CHCI,—MeOH (25 : 1), CHCI,—MeOH (10 : 1→5 : 1) CHCI,=MeOH (25 : 1, 9 : 1, 4 : 1); CHCI,=MeOH—H₂O (4 : 1 : 0.1) CHCI,=MeOH (25 : 1, 9 : 1, 4 : 1); CHCI,=MeOH—H₂O (4 : 1 : 0.1) CHCI,=MeOH—H₂O (60 : 32 : 6) CH₂CI,=CHOH (90 : 10, 80 : 20) CH₂CI,=MeOH—H₂O (80 : 32 : 6) CH₂CI,=MeOH—H₂O (80 : 32 : 6) CH₂CI,=MeOH—H₂O (80 : 2, 95 : 5, 90 : 10, 80 : 20) CH₂CI,=MeOH—H₂O (80 : 10; 85 : 15) EIOAe—MeOH—H₂O (85 : 10 : 5); CH₂CI,; CH₂CI, EIOH (90 : 2, 95 : 5, 90 : 10, MeOH EIOAe—MeOH—H₂O (85 : 10; 5); CH₂CI,; CH₂CI, EIOH (90 : 2, 95 : 5, 90 : 10, MeOH MeOH—H₂O (85 : 10; 5); CH₂CI,; CH₂CI, EIOH (90 : 2, 95 : 5, 90 : 10); MeOH MeOH—H₂O (55 : 45) MeOH—H₂O (55 : 45) MeOH—H₂O (30 : 40) MeOH—EIOAe (50 : 50), MeOH EIOAe—MeOH—II₂O (16 : 2 : 1); EIOAe—MeOH (2 : 1) Repo Repared LH-20 Repared LH-20 Repo—MeOH (100 : 0→0 : 100) Repo—MeoH (100 : 0→0 : 100) Repo—MeoH (100 : 0→0 : 100) Repo—MeoH—H₂O (30 : 70→60 : 40) Repo—MeoH—H₂O (30 : 70→60 : 40) Repo—MeoH (4 : 1) CHCI,=MeoH (4 : 1) CHCI,=MeoH (8 : 1) CHCI,=MeoH (5 : 1) CHC				
SiO ₂ CHCl ₃ -MeOH (25 : 1, 9 : 1, 4 : 1); CHCl ₃ -MeOH-H ₂ O (4 : 1; 0.1) CHCl ₃ -MeOH (25 : 1, 9 : 1, 4 : 1); CHCl ₃ -MeOH-H ₂ O (4 : 1; 0.1) CHCl ₃ -MeOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₃ Cl ₂ -EtOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₃ Cl ₂ -EtOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₃ Cl ₂ -MeOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₃ Cl ₂ -MeOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₃ Cl ₂ -MeOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₃ Cl ₂ -MeOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) MeOH-H ₂ O (85 : 10 : 5); CH ₂ Cl ₂ ; CH ₂ Cl ₂ -EtOH (98 : 2, 95 : 5, 90 : 10); MeOH MeOH-H ₂ O (50 : 40) MeOH-H ₂ O (50 : 40) MeOH-H ₂ O (50 : 40) MeOH-H ₂ O (50 : 55) MeOH-H ₂ O (16 : 2 : 1); EtOAe-MeOH (2 : 1) H ₂ O H ₂ O H ₂ O H ₂ O-MeOH (100 : 0→0 : 100) MeOH-H ₂ O (30 : 70→60 : 40) Superclean C ₁₈ CHCl ₃ -MeOH (4 : 1) CHCl ₃ -MeOH (4 : 1) CHCl ₃ -MeOH (8 : 1) CHCl ₃ -MeOH (2 : 1) CH ₃ Cl ₃ -EtOH (8 : 2) CH ₃ -Cl ₃ -EtOH (8 : 1) CH ₄ -Cl ₃ -EtOH (8 : 1) CH ₂ -EtOH (8 : 1) CH ₂ -EtOH (8 : 1) CH ₃ -Cl ₃ -EtOH (8 : 1) CH ₄ -Cl ₃ -C				
(4 : 1 : 0.1) CHCl ₃ -MeOH-H ₂ O (60 : 32 : 6) CH ₂ Cl ₂ -EtOH (90 : 10, 80 : 20) CH ₂ Cl ₂ -EtOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ -EtOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ -EtOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ -EtOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ -MeOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ -MeOH (90 : 10, 85 : 15) EtOAe-MeOH-H ₂ O (85 : 45) MeOH-H ₂ O (85 : 45) MeOH-H ₂ O (85 : 45) MeOH-H ₂ O (45 : 55) MeOH-H ₂ O (50 : 50), MeOH EtOAe-MeOH-H ₂ O (16 : 2 : 1); EtOAe-MeOH (2 : 1) EtOAe-MeOH-H ₂ O (16 : 2 : 1); EtOAe-MeOH (2 : 1) H ₂ O H ₂ O H ₂ O H ₂ O-MeOH (100 : 0→0 : 100) H ₂ O H ₂ O-MeOH (100 : 0→0 : 100) Kovasil C ₁₈ MeOH-H ₂ O (30 : 70→60 : 40) Totikocenoliuan xpomatror padpus CHCl ₃ -MeOH (4 : 1) CHCl ₃ -MeOH (8 : 2), толуол-Me ₂ CO-EtOH-NH ₃ (85 : 10 : 5), EtOAe-RiOH-NH ₃ (100 : 140 : 32 : 9), CH ₃ Cl ₂ -MeOH (25 : 1) MeOH-H ₂ O (65 : 35) MeOH-H ₂ O (65 : 35) MeOH-H ₂ O (65 : 35) MeOH-H ₂ O (65 : 4), MeCN-H ₂ O (35 : 65), 0.1% To∀/MeCN-H ₂ O (35 : 65), Ti¬O-H ₂ O (45 : 55) To∀/MeCN-H ₂ O (56 : 4), MeCN-H ₂ O (25 : 8) Totik Call H ₂ O (66 : 4) Totik Call H ₂ O (66 : 4			7, 6, 11, 13, 24, 27, 03–07, 70, 74 [13]	
SiO ₂ CHCl ₂ —ROH—H ₂ O (60 : 32 : 6) CH ₂ Cl ₂ ; CH ₂ Cl ₂ —EOH (98 : 2, 95 : 5, 90 : 10, 80 : 20) CH ₂ Cl ₂ —EOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ —EOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) CH ₂ Cl ₂ —EOH (90 : 10, 85 : 15) EIOAe—MeOH—H ₂ O (85 : 10 : 5); CH ₂ Cl ₂ — EIOA (98 : 2, 95 : 5, 90 : 10); MeOH MeOH—H ₂ O (55 : 45) MeOH—H ₂ O (55 : 45) MeOH—H ₂ O (30 : 30, MeOH EIOAe—MeOH—H ₂ O (16 : 2 : 1); EIOAe—MeOH (2 : 1) BEOAe—MeOH—H ₂ O (16 : 2 : 1); EIOAe—MeOH (2 : 1) Theomania H ₂ O H ₂ O—MeOH (100 : 0→0 : 100) Royaria H ₂ O—MeOH (100 : 0→0 : 100) Royaria H ₂ O—MeOH—H ₂ O (30 : 70→60 : 40) Superclean C ₁₈ EIOH—H ₂ O (60 : 40) TOHKOCHOHIBAR XPOMATOTPAIDHR CHCl ₃ —ROH (4 : 1) CHCl ₃ —ROH (4 : 1) CHCl ₃ —ROH (8 : 2), roxyan—M ₂ CO—EIOH—NH ₃ (100 : 140 : 32 : 9), CH ₂ Cl ₂ —EOH—H ₂ O (80 : 10 : 2) CHC ₂ C—EIOH (8 : 2), roxyan—M ₂ CO—EIOH—NH ₃ (100 : 140 : 32 : 9), CH ₂ Cl ₂ —EOH—H ₃ O (35 : 65), 0.1% TOW/MeCN—H ₂ O (35 : 65), TrO—H ₂ O (45 : 55) Roo—SiO ₂ TREKCAH—M ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) TREKCAH—M ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) 16, 56 [36] 24, 26, 31, 32, 34 -36, 56, 64-69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 24, 26, 31, 32, 34 -36, 56, 64-69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 9, 53, 55 [16]; 24, 26, 31, 32, 34 -36, 56, 64-69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [34] 11 [135]; 40 [24]; 56 [7, 16, 26, 34, 52, 56, 70, 71 [11]	
СН ₂ Cl ₂ ; CH ₂ Cl ₂ -EiOH (98 : 2, 95 : 5, 90 : 10, 80 : 20) СН ₂ Cl ₂ -EiOH (90 : 10, 80 : 20, 70 : 30, 50 : 50) СН ₂ Cl ₂ -MeOH (90 : 10, 85 : 15) EtOAc-MeOH-H ₂ O (85 : 10 : 5); CH ₂ Cl ₂ - EtOH (98 : 2, 95 : 5, 90 : 10); MeOH MeOH-H ₂ O (55 : 45) MeOH-H ₂ O (50 : 40) MeOH-H ₂ O (45 : 55) MeOH-EiOAc (50 : 50), MeOH EtOAc-MeOH (10 : 0 → 0 : 100) H ₂ O MeOH-H ₂ O (16 : 2 : 1); EtOAc-MeOH (2 : 1) EtOAc-MeOH (100 : 0 → 0 : 100) EtOAc-MeOH (100 : 0 → 0 : 100) MeOH-H ₂ O (30 : 70 → 60 : 40) Toincocnöthar xpomatoripaфия CHCl ₂ -EiOH (8 : 1) CHCl ₃ -MeOH (4 : 1) CHCl ₃ -MeOH (4 : 1) CHCl ₃ -MeOH (5 : 1) CHCl ₃ -MeOH (8 : 2) CHC ₃ -EiOH (8 : 2) CHC ₃ -EiOH (8 : 2) CHC ₃ -EiOH-H ₂ O (60 : 2 : 1) CHCl ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHCl ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHCl ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHCl ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHCl ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (8 : 2) CHC ₃ -EiOH-H ₂ O (16 : 2 : 1) CHC ₃ -MeOH (20 : 1) CHC ₃	SiO.	, ,	16.56[36]	
CH2Cl2-EtOH (90:10, 80:20, 70:30, 50:50) CH2Cl2-MEOH (90:10, 88:15) EtOH-QO (85:10:5); CH2Cl2; CH2Cl2—EtOH (98:2; 95:5; 90:10); MeOH MEOH—H2O (55:45) MEOH—H2O (55:45) MEOH—H2O (55:45) MEOH—H2O (55:45) MEOH—H2O (56:0:40) MEOH—H2O (16:2:1); EtOAc—MEOH (2:1) Ceфадекс LH-20 MEOH—H2O (16:2:1); EtOAc—MEOH (2:1) EtOAc—MEOH—H2O (16:2:1); EtOAc—MEOH (2:1) MEOH—H2O (100:0→0:100) H2O MEOH—H2O (30:70→60:40) TOHNOCATOHHAR XPOMATOR PAGE TOHNOCATOHHAR XPOMATOR PAGE TOHNOCATOHHAR XPOMATOR PAGE CHC12—EDOH (8:1) CH212—EDOH (8:2), TONYON—Me)CO—EDOH—NH3 (85:10:15), EDOAC—EDOH—H2O (80:10:2) CH212—EDOH (8:2), TONYON—Me)CO—EDO	5102	= \ /		
СН ₂ СІ ₂ -МеОН (90 : 10; 85 : 15) EtOAc-MeOH-H ₂ O (85 : 10 : 5); CH ₂ CI ₂ ; CH ₂ CI ₂ — EtOH (98 : 2; 95 : 5; 90 : 10); MeOH MeOH-H ₂ O (50 : 40) MeOH-H ₂ O (50 : 40) MeOH-H ₂ O (50 : 50) MeOH-H ₂ O (50 : 50) MeOH-H ₂ O (50 : 50) MeOH-H ₂ O (60 : 50) MeOH-H ₂ O (16 : 2 : 1); EtOAc-MeOH (2 : 1) EtOAc-MeOH-H ₂ O (16 : 2 : 1); EtOAc-MeOH (2 : 1) H ₂ O-MeOH (100 : 0→0 : 100) Royal T ₁ , 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] MeOH-H ₂ O (30 : 70→60 : 40) Superclean C ₁₈ EtOH-H ₂ O (60 : 40) TOHKOCANOBHAR XPOMATOFPADHAR CHCl ₃ -MeOH (2 : 1) CHCl ₃ -MeOH (2 : 1) CHCl ₃ -MeOH (8 : 1) CHCl ₃ -MeOH-H ₃ O (60 : 40) TOHKOCANOBHAR XPOMATOFPADHAR (85 : 10 : 5), EtOAc-EiOH-H ₃ O (80 : 10 : 2) CH ₂ Cl ₂ -EtOH (8 : 2), TOHYOR-MeQCO-EtOH-NH ₃ (85 : 10 : 5), EtOAc-EiOH-H ₃ O (80 : 10 : 2) CH ₂ Cl ₂ -EtOH (8 : 2), TOHYOR-MeQCO-ETOH-NH ₃ (100 : 140 : 32 : 9), CH ₃ Cl ₂ -MeOH-C ₄ H ₄ (25 : 5 : 3), EtOAc-EiOH-H ₃ O (65 : 35) MeOH-H ₃ O (65 : 35) MeOH-H ₃ O (65 : 35) Toby/MeCN-H ₂ O (35 : 65), TTФ-H ₃ O (45 : 55) Toby/MeCN-H ₂ O (35 : 65), TTФ-H ₃ O (45 : 55) Toby/MeCN-H ₂ O (35 : 65), TTФ-H ₃ O (45 : 55) Toby/MeCN-H ₂ O (35 : 65), TTФ-H ₃ O (45 : 55) Toby/MeCN-H ₂ O (56 : 4), MeCN-H ₂ O (28 8) St. 35, 56-60, 61, 63, 70 [12] 31, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 31, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 32, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 33, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 34, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 35, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 36, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] 37, 11, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52,				
БЕОЛСЕ-МЕОЙ-Н₂О (85: 10: 5); CH₂Cl₂; CH₂Cl₂— EtOH (98: 2; 95: 5; 90: 10); MeOH MeOH—H₂O (55: 45) MeOH—H₂O (50: 40) MeOH—H₂O (45: 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] МеОН—H₂O (50: 40) MeOH—H₂O (45: 55) MeOH—H₂O (45: 55) 24, 26, 31, 32, 34-36, 56, 64-69 [28] Сефадекс LH-20 MeOH—EtOAc (50: 50), MeOH 24, 26, 31, 32, 34-36, 56, 64-69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Полиамид H₂O 9, 53, 55 [16]; 24, 26, 31, 32, 34-36, 56, 64-69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 39 [27]; 41, 42, 50 [25] Коvasil C₁8 MeOH—H₂O (100: 0→0: 100) 9, 53, 55 [16]; 24, 26, 31, 32, 34-36, 56, 64-69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 Коvasil C₁8 MeOH—H₂O (30: 70→60: 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Коvasil C₁8 MeOH—H₂O (30: 70→60: 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Коvasil C₁8 EtOH—H₂O (60: 40) 11 [35]; 40 [24]; 56 [34] СНС13—MeOH (8: 1) CHC13—MeOH (8: 1) 11 [35]; 40 [24]; 56 [34] СНС13—MeOH (8: 1) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] SiO2 CHC13—MeOH—C₂H ₂ (20: 10: 2) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] 7, 16, 26, 34, 52,			19, 50, 61 [25]	
БЕОН (98 : 2; 95 : 5; 90 : 10); МеОН МеОН-Н ₂ О (55 : 45) МеОН-Н ₂ О (55 : 45) МеОН-Н ₂ О (55 : 45) МеОН-Н ₂ О (45 : 55) МеОН-Н ₂ О (45 : 55) МеОН-Н ₂ О (16 : 2 : 1); БЕОАС-МЕОН (2 : 1) 30, 49, 59 [26]; 38, 39 [27] Сефадекс LH-20 МеОН-Н ₂ О (16 : 2 : 1); БЕОАС-МЕОН (2 : 1) 24, 26, 31, 32, 34-36, 56, 64-69 [28] Сефадекс LH-20 Н ₂ О 9, 53, 55 [16]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] Полиамид 14, 42, 50 [25] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Комазіl С ₁₈ МеОН-Н ₂ О (30 : 70 → 60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Комазіl С ₁₈ МеОН-Н ₂ О (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНЯЯ КРОМНІЯ В СНСІ3-МЕОН (4 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (5 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (5 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (5 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (5 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (5 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (8 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (8 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ3-МЕОН (8 : 1) <td< td=""><td></td><td> ` ` ` ' ' '</td><td>2 10 12 12 17 10 22 24 26 22 24 47</td></td<>		` ` ` ' ' '	2 10 12 12 17 10 22 24 26 22 24 47	
МеОН—Н₂О (55 : 45) МеОН—Н₂О (50 : 40) МеОН—Н₂О (55 : 55) 41, 42, 50 [25] 30, 49, 59 [26]; 38, 39 [27] Сефадекс LH-20 МеОН—ЕЮОК (50 : 50), МЕОН EtOAc=MeOH—H₂O (16 : 2 : 1); EtOAc=MeOH (2 : 1) 24, 26, 31, 32, 34–36, 56, 64–69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Полнамид Н₂О 9, 53, 55 [16]; 24, 26, 31, 32, 34–36, 56, 64–69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 Полнамид Н₂О—MeOH (100 : 0→0 : 100) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Коvasil C₁8 МеОН—Н₂О (30 : 70→60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Superclean C₁8 EIOH—Н₂О (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНАЯ хроматография CHC1₃—EtOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHC1₃—MeOH (5 : 1) 11 [35]; 40 [24]; 56 [34] CHC1₃—MeOH (8 : 1) 16, 56 [36] CHC1₃—MeOH (8 : 1) 16, 56 [36] CHC1₃—MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15] SiO₂ CHC1₃—MeOH—Q (8 : 10 : 2) CH2₂—EtOH (8 : 2), толуол—Me₂CO—EtOH—NH₃ (100 : 140 : 32 : 9), CH₂Cl₂—MeOH—Cq, H₂, (25 : 5 : 3), EtOAc—HeOH—Ry, Glassing the color of				
МеОН—Н₂О (50 : 40) МеОН—ЕДО (45 : 55) 30, 49, 59 [26]; 38, 39 [27] Сефадекс LH-20 МеОН—ЕГОАС (50 : 50), МеОН 28, 51 [22] Сефадекс LH-20 EtOAc-MeOH—H₂O (16 : 2 : 1); EtOAc-MeOH (2 : 1) 24, 26, 31, 32, 34–36, 56, 64–69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Полиамид H₂O 9, 53, 55 [16]; 24, 26, 31, 32, 34–36, 56, 64–69 [28]; 38, 99 [27]; 41, 42, 50 [25] Коvasil C₁в MeOH—H₂O (30 : 70→60 : 40) 30, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Коvasil C₁в EtOH—H₂O (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНАЯ ХРОМАНИЯ CHCl₃—MeOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHCl₃—MeOH (8 : 1) 16, 52, 56, 62 [20] CHCl₃—MeOH (8 : 1) 3, 26, 52, 56, 58, 62, 67 [29]; 4–6, 20 [13]; 26, 56 [37] SiO₂ CHCl₃—MeOH (8 : 1) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH₂—EtOH (8 : 2), толуол—Me₂CO—EtOH—NH₃ (85 : 10 : 5), EtOAc—EtOH—H₂O (80 : 10 : 2) 19, 56, 61 [23]; 24, 26, 31, 32, 34–36, 56, 64–69 [28] MeOH—H₂O (65 : 35) MeOH—H₂O (65 : 35) 19, 56, 61 [23] MeOH—H₂O (65 : 35) 19, 56, 61 [23] MeOH—H₂O (65 : 35) 19, 56, 61 [23] MeOH—H₂O (65 : 35) 19, 56, 6				
МеОН-Н₂О (45 : 55) 28, 51 [22] Сефадекс LH-20 MeOH-EtOAc (50 : 50), MeOH 24, 26, 31, 32, 34–36, 56, 64–69 [28] ЕtOAc-MeOH-H₂O (16 : 2 : 1); EtOAc-MeOH (2 : 1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Полиамид 9, 53, 55 [16]; 24, 26, 31, 32, 34–36, 56, 64–69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 Полиамид 14₂O-MeOH (100 : 0→0 : 100) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Kovasil C₁8 MeOH-H₂O (30 : 70→60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Superclean C₁8 EtOH-H₂O (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ CHC1₃-MeOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHC1₃-MeOH (5 : 1) 16, 56 [36] CHC1₃-MeOH (8 : 1) 16, 56 [36] CHC1₃-MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15] CH2₁-EtOH (85 : 15), EtOAc-MeOH-NH₃ (85 : 10 : 5), EtOAc-EtOH-H₂O (80 : 10 : 2) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH2₁-EtOH (8 : 2), Tonyon-Me₂CO-EtOH-NH₃ (100 : 140 : 32 : 9), CH₂Cl₂-MeOH-C₀H₀ (25 : 5) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] MeOH-H₂O (4 : 6), MeCN-H₂O (35 : 65), 0.1% (100 : 14) 19, 56, 61 [23] <		· · · · · · · · · · · · · · · · · · ·		
Сефадекс LH-20 MeOH-EtOAc (50 : 50), MeOH EtOAc-MeOH-H₂O (16 : 2 : 1); EtOAc-MeOH (2 : 1) 24, 26, 31, 32, 34–36, 56, 64–69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Полиамид H₂O 9, 53, 55 [16]; 24, 26, 31, 32, 34–36, 56, 64–69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 39 [27]; 41, 42, 50 [25] Коvasil C₁8 MeOH-H₂O (30 : 70→60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] Superclean C₁8 EtOH-H₂O (60 : 40) 16, 52, 56, 60, 61, 63, 70 [12] Superclean C₁8 EtOH-H₂O (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНЯЯ ХРОМАТОРИИЯ CHC1₃-MeOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHC1₃-MeOH (5 : 1) 16, 56 [36] CHC1₃-MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15] CHC1₃-MeOH (8 : 1) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH2_2-EtOH (85 : 15), EtOAc-MeOH-NH₃ (85 : 10 : 5), EtOAc-EtOH-H₂O (80 : 10 : 2) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH2_2-EtOH (85 : 2), TONYOU-Me₂CO-EtOH-NH₃ (100 : 10 : 2) 19, 56, 61 [23]; 24, 26, 31, 32, 34–36, 56, 64–69 [28] MeOH-H₂O (65 : 35) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] MeOH-H₂O (30 : 65), TrO-H₂O (45 : 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 55, 56–60, 61, 63, 70 [12]				
Сефадекс LH-20 EtOAc-MeOH-H₂O (16 : 2 : 1); EtOAc-MeOH (2 : 1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Полиамид H₂O 9, 53, 55 [16]; 24, 26, 31, 32, 34-36, 56, 64-69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 39 [27]; 41, 42, 50 [25] Коvasil C₁s MeOH-H₂O (30 : 70→60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Superclean C₁s EtOH-H₂O (60 : 40) 16, 52, 56, 62 [20] Тонкослойная хроматография CHC1₃-EtOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHC1₃-MeOH (5 : 1) 16, 52, 56, 62 [20] CHC1₃-MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] CH2₁-MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] CH₂-EtOH (8 : 2), толуол-Me₂CO-EtOH-NH₃ (85 : 10 : 5), EtOAc-EtOH-H₂O (80 : 10 : 2) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH₂-Cl₂-EtOH (8 : 2), толуол-Me₂CO-EtOH-NH₃ (100 : 140 : 32 : 9), CH₂-Cl₂-MeOH-CeH₀ (25 : 5 : 3), EtOAc-EtOH - H₂O (65 : 35) 19, 56, 61 [23] MeOH-H₂O (4 : 6), MeCN-H₂O (35 : 65), 0.1% 19, 56, 61 [23] MeOH-H₂O (4 : 6), MeCN-H₂O (35 : 65), TTΦ-H₂O (45 : 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Iциано-SiO₂ Tekcah-Me₂CO (6 : 4), MeCN-H₂O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 6				
Неолемеон (16 : 2 : 1); втолес-меон (2 : 1) 1	G 1 111.00	MeOH-EtOAc (50 : 50), MeOH		
Н ₂ О Полиамид Н ₂ О—МеОН (100: 0→0: 100) Н ₂ О—МеОН (100: 0→0: 100) Коvasil С ₁₈ МеОН—Н ₂ О (30: 70→60: 40) Тонкослойная хроматография СНС1 ₃ —ЕюН (4: 1) СНС1 ₃ —ЕюН (8: 1) СНС1 ₃ —МеОН (8: 1) По : 140: 32: 9), СН ₂ С1 ₂ —МеОН—Сь (4) (25: 5: 3), віо Ас—ВеОН—NН ₃ (100: 140: 32: 9), СН ₂ С1 ₂ —МеОН—Сь (4) (25: 5: 3), віо Ас—ВеОН—Н ₂ О (65: 35) МеОН—Н ₂ О (6: 35) МеОН—Н ₂ О (6: 6), МеСN—Н ₂ О (35: 65), 0.1% ТФУ/МеСN—Н ₂ О (35: 65), ПТФ—Н ₂ О (45: 55) З, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12]	Сефадекс LH-20	EtOAc-MeOH-H ₂ O (16 : 2 : 1); EtOAc-MeOH (2 : 1)		
Н₂О 64-69 [28]; 28, 51 [23]; 30, 49, 59 [26]; 38 39 [27]; 41, 42, 50 [25] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Коvasil C18 МеОН-Н₂О (30: 70→60: 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Сврежение С18 ЕЕОН-Н₂О (60: 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ СНС13-ЕЕОН (4: 1) 11 [35]; 40 [24]; 56 [34] СНС13-МеОН (8: 1) 11 [35]; 40 [24]; 56 [34] СНС13-МеОН (8: 1) 11 [35]; 40 [24]; 56 [34] СНС13-МеОН (8: 1) 16, 56 [36] 3, 26, 52, 56, 58, 62, 67 [29]; 4-6, 20 [13]; 26, 56 [37] СНС13-МеОН (8: 1) 17, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] СНС2-ЕЕОН (8: 5: 15), ЕЮАС-ЕЮН-Н40 (80: 10: 2) 19, 56, 61 [23]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] СН2-ЕЕОН (8: 2), толуол-Ме2-СО-ЕТОН-NН3 (100: 140: 32: 9), CH ₂ Cl ₂ -MeOH-C ₆ H ₆ (25: 5: 3), EtOAC-ETOH-NH3 (100: 140: 32: 9), CH ₂ Cl ₂ -MeOH-C ₆ H ₆ (25: 5: 3), EtOAC-ETOH-H ₂ O (65: 35) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Ме		2 (),		
Полиамид		11.0		
Kovasil C ₁₈ MeOH-H ₂ O (30 : 70→60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Superclean C ₁₈ EtOH-H ₂ O (60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] ТОНКОСЛОЙНЯЯ ХРОМАТОГРАФИЯ СНСІ ₃ -ЕІОН (4 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ ₃ -МеОН (4 : 1) 11 [35]; 40 [24]; 56 [34] СНСІ ₃ -МеОН (8 : 1) 16, 56 [36] СНСІ ₃ -МеОН (8 : 1) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] СНС ₃ -МеОН (8 : 5), ЕТОАС-МЕОН-NH ₃ (85 : 10 : 5), ЕТОАС-ЕТОН-NH ₃ (100 : 140 : 32 : 9), СН ₂ СІ ₂ -МеОН-С ₆ H ₆ (25 : 5 : 3), ETOAC-ETOH - H ₂ O (16 : 2 : 1) 19, 56, 61 [23]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] МеОН-Н ₂ O (65 : 35) 19, 56, 61 [23] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] МеОН-Н ₂ O (4 : 6), МеСN-Н ₂ O (35 : 65), 0.1% 19, 56, 61 [23] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] МеОН-Н ₂ O (35 : 65), ТГФ-Н ₂ O (45 : 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Пимно-SiO ₂ МеОН-Н ₂ O (35 : 65), ТГФ-Н ₂ O (45 : 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] <tr< td=""><td>П</td><td>H₂U</td><td></td></tr<>	П	H ₂ U		
Н₂О-меОН (100 : 0→0 : 100) 52, 53, 56-60, 61, 63, 70 [12] Kovasil C18 МеОН-Н₂О (30 : 70→60 : 40) 52, 53, 56-60, 61, 63, 70 [12] Superclean C18 ЕЮН-Н₂О (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНЯЯ ХРОМАТОГРАФИЯ СНС13-ЕЮН (4 : 1) 11 [35]; 40 [24]; 56 [34] СНС13-МеОН (5 : 1) 16, 56 [36] СНС13-МеОН (8 : 1) 16, 56 [37] СНС13-МеОН (8 : 1) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] СНС21-ЕЮН (85 : 15), ЕЮАС-МЕОН-NН3 (85 : 10 : 5), ЕЮАС-ЕЮН-Н₂О (80 : 10 : 2) 19, 56, 61 [23]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] СНС13-МЕОН (8 : 2), толуол-Ме2CO-ЕЮН-NН3 (100 : 140 : 32 : 9), CH3Cl2-MEOH-C6H6 (25 : 5 : 3), EtOAC-EtOH-H₂O (16 : 2 : 1) 19, 56, 61 [23] МЕОН-Н₂О (45 : 6), МЕОН-Н₂О (35 : 65), 0.1% (20, 0.1%) 19, 56, 61 [23] ОФ-SiO2 МЕОН-Н₂О (4 : 6), МЕСN-Н₂О (35 : 65), 0.1% (20, 0.1%) 19, 56, 61 [23] 19, 56, 61 [23] 19, 56, 61 [23] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] <th cols<="" td=""><td>Полиамид</td><td></td><td></td></th>	<td>Полиамид</td> <td></td> <td></td>	Полиамид		
Kovasil C ₁₈ MeOH-H ₂ O (30 : 70→60 : 40) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Superclean C ₁₈ EtOH-H ₂ O (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ СНС1 ₃ -ЕtOH (4 : 1) 11 [35]; 40 [24]; 56 [34] СНС1 ₃ -МеОН (4 : 1) 16, 56 [36] СНС1 ₃ -МеОН (5 : 1) 3, 26, 52, 56, 58, 62, 67 [29]; 4-6, 20 [13]; 26, 56 [37] СНС1 ₃ -МеОН (8 : 1) 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] СНС2 ₁ -ЕtOH (85 : 15), EtOAc-MeOH-NH ₃ (85 : 10 : 5), EtOAc-EtOH-H ₂ O (80 : 10 : 2) 19, 56, 61 [23]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] СН ₂ -ЕtOH (8 : 2), толуол-Ме ₂ -СО-ЕtOH-NH ₃ (100 : 140 : 32 : 9), CH ₂ -Cl ₂ -MeOH-C ₆ H ₆ (25 : 5 : 3), EtOAc-EtOH - H ₂ O (16 : 2 : 1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] ОФ-SiO ₂ MeOH-H ₂ O (4 : 6), MeCN-H ₂ O (35 : 65), 0.1% TФ-H ₂ O (45 : 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Циано-SiO ₂ ТФУ/МеСN-H ₂ O (6 : 4), MeCN-H ₂ O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]		$H_2O-MeOH (100:0 \rightarrow 0:100)$		
Kovasil C18 MeOH−H₂O (30 : 70→60 : 40) 52, 53, 56-60, 61, 63, 70 [12] Superclean C18 EtOH−H₂O (60 : 40) 16, 52, 56, 62 [20] ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ СНС1₃—EtOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHC1₃—MeOH (4 : 1) 16, 56 [36] CHC1₃—MeOH (5 : 1) 26, 56 [37] CHC1₃—MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15] CH21₃—MeOH (25 : 1) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH2C1₂—EtOH (85 : 15), EtOAc-MeOH-NH₃ [85 : 10 : 5), EtOAc-EtOH-H₂O (80 : 10 : 2) CH2C1₂—EtOH (8 : 2), толуол-Me₂CO-EtOH-NH₃ [100 : 140 : 32 : 9), CH₂C1₂—MeOH-C6H₀ (25 : 5 : 3), EtOAc-EtOH - H₂O (16 : 2 : 1) MeOH-H₂O (65 : 35) 19, 56, 61 [23] ОФ-SiO2 MeOH-H₂O (4 : 6), MeCN-H₂O (35 : 65), 0.1% 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, TФУ/MeCN-H₂O (35 : 65), TГФ-H₂O (45 : 55) Привно-SiO2 Tekcah-Me₂CO (6 : 4), MeCN-H₂O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]		- ` ` /		
Superclean C ₁₈ EtOH—H ₂ O (60 : 40) 16, 52, 53, 50–40, 61, 63, 70 [12] СИСІ ₃ —ЕtOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHCl ₃ —MeOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHCl ₃ —MeOH (4 : 1) 11 [35]; 40 [24]; 56 [34] CHCl ₃ —MeOH (5 : 1) 16, 56 [36] CHCl ₃ —MeOH (8 : 1) 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15] CH2Cl ₂ —EtOH (85 : 15), EtOAc-MeOH—NH ₃ (85 : 10 : 5), EtOAc-EtOH—H ₂ O (80 : 10 : 2) CH ₂ Cl ₂ —EtOH (8 : 2), TOJYOJD—Me ₂ CO—EtOH—NH ₃ (100 : 140 : 32 : 9), CH ₂ Cl ₂ —MeOH—C ₆ H ₆ (25 : 5 : 3), EtOAc—EtOH — H ₂ O (16 : 2 : 1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] MeOH—H ₂ O (4 : 6), MeCN—H ₂ O (35 : 65), TTФ—H ₂ O (45 : 55) 52, 53, 56–60, 61, 63, 70 [12] Циано-SiO ₂ тексан—Me ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12]	Kovasil C ₁₈	MeOH-H ₂ O (30 : $70 \rightarrow 60 : 40$)		
Тонкослойная хроматография CHCl ₃ —EtOH (4 : 1) CHCl ₃ —MeOH (4 : 1) CHCl ₃ —MeOH (5 : 1) CHCl ₃ —MeOH (8 : 1) CHCl ₃ —MeOH (8 : 1) CHCl ₃ —MeOH (8 : 1) CHCl ₃ —MeOH (25 : 1) CHCl ₃ —MeOH (8 : 1) CHCl ₂ —EtOH (85 : 15), EtOAc—MeOH—NH ₃ (85 : 10 : 5), EtOAc—EtOH—H ₂ O (80 : 10 : 2) CH ₂ Cl ₂ —EtOH (8 : 2), толуол—Me ₂ CO—EtOH—NH ₃ (100 : 140 : 32 : 9), CH ₂ Cl ₂ —MeOH—C ₆ H ₆ (25 : 5 : 3), EtOAc—EtOH—H ₂ O (16 : 2 : 1) MeOH—H ₂ O (65 : 35) MeOH—H ₂ O (35 : 65), TГФ—H ₂ O (35 : 65), 0.1% TФУ/МеCN—H ₂ O (35 : 65), TГФ—H ₂ O (2 : 8) Tekcah—Me ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) Tekcah—Me ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) Tekcah—Me ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) Tekcah—Me ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8) Tekcah—Me ₂ CO (6 : 4), MeCN—H ₂ O (2 : 8)				
СНСІ3-МеОН (4 : 1) СНСІ3-МеОН (5 : 1) СНСІ3-МеОН (8 : 1) СНСІ3-МеОН (25 : 1) СН2СІ2-ЕtOH (85 : 15), EtOAc-MeOH-NH3 (85 : 10 : 5), EtOAc-EtOH-H2O (80 : 10 : 2) СН2СІ2-ЕtOH (8 : 2), толуол-Ме2CO-EtOH-NH3 (100 : 140 : 32 : 9), CH2CІ2-МеОН-С6H6 (25 : 5 : 3), EtOAc-EtOH - H2O (16 : 2 : 1) МеОН-Н2О (65 : 35) ОФ-SiO2 МеОН-Н2О (35 : 65), ТГФ-Н2О (45 : 55) Потимон - Месон	Superclean C ₁₈	=	16, 52, 56, 62 [20]	
СНСІ ₃ -МеОН (4 : 1) СНСІ ₃ -МеОН (5 : 1) СНСІ ₃ -МеОН (8 : 1) СНСІ ₃ -МеОН (8 : 1) СНСІ ₃ -МеОН (8 : 1) СНСІ ₃ -МеОН (25 : 1) СНСІ ₃ -МеОН (25 : 1) СН ₂ СІ ₂ -ЕtOH (85 : 15), EtOAc-MeOH-NH ₃ (85 : 10 : 5), EtOAc-EtOH-H ₂ O (80 : 10 : 2) СН ₂ СІ ₂ -ЕtOH (8 : 2), толуол-Ме ₂ СО-ЕtOH-NH ₃ (100 : 140 : 32 : 9), CH ₂ СІ ₂ -МеОН-С ₆ H ₆ (25 : 5 : 3), EtOAc-EtOH - H ₂ O (16 : 2 : 1) МеОН-Н ₂ О (65 : 35) МеОН-Н ₂ О (4 : 6), МеСN-Н ₂ О (35 : 65), 0.1% ТФУ/МеСN-H ₂ O (35 : 65), ТГФ-H ₂ O (2 : 8) Пиано-SiO ₂ Пексан-Ме ₂ СО (6 : 4), МеСN-Н ₂ O (2 : 8)			T	
СНСІ ₃ -МеОН (5 : 1) СНСІ ₃ -МеОН (8 : 1) СНСІ ₃ -МеОН (8 : 1) СНСІ ₃ -МеОН (25 : 1) СНСІ ₃ -МеОН (25 : 1) СН ₂ СІ ₂ -ЕtOH (85 : 15), EtOAc-MeOH-NH ₃ (85 : 10 : 5), EtOAc-EtOH-H ₂ O (80 : 10 : 2) СН ₂ СІ ₂ -ЕtOH (8 : 2), толуол-Ме ₂ СО-ЕtOH-NH ₃ (100 : 140 : 32 : 9), CH ₂ СІ ₂ -МеОН-С ₆ H ₆ (25 : 5 : 3), EtOAc-EtOH - H ₂ O (16 : 2 : 1) МеОН-Н ₂ О (65 : 35) МеОН-Н ₂ О (4 : 6), MеСN-Н ₂ О (35 : 65), 0.1% ТФУ/МеСN-Н ₂ О (35 : 65), ТГФ-Н ₂ О (45 : 55) Тексан-Ме ₂ СО (6 : 4), MеСN-Н ₂ О (2 : 8) 3, 26, 52, 56, 58, 62, 67 [29]; 4-6, 20 [13]; 26, 56 [37] 7, 8, 11, 15, 24, 27, 65-67, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 71 [11] 19, 56, 61 [23]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]				
СНСІ ₃ –МеОН (S : 1) СНСІ ₃ –МеОН (S : 1) СНСІ ₃ –МеОН (8 : 1) СНСІ ₃ –МеОН (8 : 1) СНСІ ₃ –МеОН (25 : 1) СНСІ ₃ –МеОН (25 : 1) СНСІ ₃ –МеОН (25 : 1) СН ₂ СІ ₂ –ЕtOH (85 : 15), EtOAc–MeOH–NH ₃ (85 : 10 : 5), EtOAc–EtOH–H ₂ O (80 : 10 : 2) СН ₂ СІ ₂ –ЕtOH (8 : 2), толуол–Me ₂ CO–EtOH–NH ₃ (100 : 140 : 32 : 9), CH ₂ CІ ₂ –MeOH–C ₆ H ₆ (25 : 5 : 3), EtOAc–EtOH – H ₂ O (16 : 2 : 1) МеОН–H ₂ O (65 : 35) МеОН–H ₂ O (4 : 6), MеCN–H ₂ O (35 : 65), 0.1% ТФУ/МеСN–H ₂ O (35 : 65), ТГФ–H ₂ O (45 : 55) Тексан–Me ₂ CO (6 : 4), MeCN–H ₂ O (2 : 8) 26, 56 [37] 7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15] 7, 16, 26, 34, 52, 56, 70, 71 [11] 19, 56, 61 [23]; 24, 26, 31, 32, 34–36, 56, 64–69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12]		CHCl ₃ –MeOH (4 : 1)		
СНСІ ₃ - МеОН (8 : 1) СНСІ ₃ - МеОН (8 : 1) СНСІ ₃ - МеОН (25 : 1) СНСІ ₃ - МеОН (25 : 1) СН ₂ СІ ₂ - ЕtOH (85 : 15), EtOAc- MeOH - NH ₃ (85 : 10 : 5), EtOAc - EtOH - H ₂ O (80 : 10 : 2) СН ₂ СІ ₂ - ЕtOH (8 : 2), толуол - Me ₂ CO - EtOH - NH ₃ (100 : 140 : 32 : 9), CH ₂ CІ ₂ - MeOH - C ₆ H ₆ (25 : 5 : 3), EtOAc - EtOH - H ₂ O (16 : 2 : 1) МеОН - H ₂ O (65 : 35) ОФ-SiO ₂ МеОН - H ₂ O (4 : 6), MeCN - H ₂ O (35 : 65), 0.1% ТФУ/МеСN - H ₂ O (35 : 65), ТГФ - H ₂ O (45 : 55) Тексан - Me ₂ CO (6 : 4), MeCN - H ₂ O (2 : 8) Тексан - Me ₂ CO (6 : 4), MeCN - H ₂ O (2 : 8)		CHCl₂–MeOH (5 : 1)		
SiO2 CHCl3-MeOH (25 : 1) 7, 16, 26, 34, 52, 56, 70, 71 [11] CH2Cl2-EtOH (85 : 15), EtOAc-MeOH-NH3 (85 : 10 : 5), EtOAc-EtOH-H2O (80 : 10 : 2) 19, 56, 61 [23]; 24, 26, 31, 32, 34-36, 56, 64-69 [28] CH2Cl2-EtOH (8 : 2), TOJYOJO-Me2CO-EtOH-NH3 (100 : 140 : 32 : 9), CH2Cl2-MeOH-C6H6 (25 : 5 : 3), EtOAc-EtOH - H2O (16 : 2 : 1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] MeOH-H2O (65 : 35) 19, 56, 61 [23] МеОН-H2O (4 : 6), MeCN-H2O (35 : 65), 0.1% TФУ/MeCN-H2O (35 : 65), TГФ-H2O (45 : 55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Циано-SiO2 Тексан-Me2CO (6 : 4), MeCN-H2O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]		· · · · · · · · · · · · · · · · · · ·		
СН ₂ Cl ₂ -EtOH (85 : 15), EtOAc-MeOH-NH ₃ (85 : 10 : 5), EtOAc-EtOH-H ₂ O (80 : 10 : 2) СН ₂ Cl ₂ -EtOH (8 : 2), толуол-Me ₂ CO-EtOH-NH ₃ (100 : 140 : 32 : 9), CH ₂ Cl ₂ -MeOH-C ₆ H ₆ (25 : 5 : 3), EtOAc-EtOH - H ₂ O (16 : 2 : 1) МеОН-H ₂ O (65 : 35) ОФ-SiO ₂ МеОН-H ₂ O (4 : 6), MeCN-H ₂ O (35 : 65), 0.1% ТФУ/МеСN-H ₂ O (35 : 65), TГФ-H ₂ O (45 : 55) Пексан-Me ₂ CO (6 : 4), MeCN-H ₂ O (2 : 8) Тексан-Me ₂ CO (6 : 4), MeCN-H ₂ O (2 : 8)				
(85 : 10 : 5), EtOAc-EtOH-H ₂ O (80 : 10 : 2) СН ₂ Cl ₂ -EtOH (8 : 2), толуол-Me ₂ CO-EtOH-NH ₃ (100 : 140 : 32 : 9), CH ₂ Cl ₂ -MeOH-C ₆ H ₆ (25 : 5 : 3), EtOAc-EtOH - H ₂ O (16 : 2 : 1) МеОН-H ₂ O (65 : 35) ОФ-SiO ₂ МеОН-H ₂ O (4 : 6), MeCN-H ₂ O (35 : 65), 0.1% ТФУ/МеСN-H ₂ O (35 : 65), ТГФ-H ₂ O (45 : 55) Пексан-Me ₂ CO (6 : 4), MeCN-H ₂ O (2 : 8) (85 : 10 : 5), EtOAc-EtOH - H ₂ O (80 : 10 : 2) (94 - 69 [28] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]	SiO ₂	• • • • • • • • • • • • • • • • • • • •		
CH2Cl2-EtOH (8:2), толуол-Ме2CO-EtOH-NH3 (100:140:32:9), CH2Cl2-MeOH-C6H6 (25:5:3), EtOAc-EtOH - H2O (16:2:1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] ОФ-SiO2 МеОН-H2O (4:6), MеCN-H2O (35:65), 0.1% ТФУ/МеСN-H2O (35:65), TТФ-H2O (45:55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] Циано-SiO2 Гексан-Ме2CO (6:4), MеCN-H2O (2:8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]				
(100:140:32:9), CH2Cl2-MeOH-C6H6 (25:5:3), EtOAc-EtOH - H2O (16:2:1) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12] МеОН-H2O (65:35) 19, 56, 61 [23] ОФ-SiO2 МеОН-H2O (4:6), MeCN-H2O (35:65), 0.1% 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34,			64–69 [28]	
(100:140:32:9), CH2Cl2-MeOH-C6H6 (25:5:3), EtOAc-EtOH - H2O (16:2:1) 52, 53, 56-60, 61, 63, 70 [12] МеОН-H2O (65:35) 19, 56, 61 [23] ОФ-SiO2 МеОН-H2O (4:6), MeCN-H2O (35:65), 0.1% TФУ/МеСN-H2O (35:65), ТГФ-H2O (45:55) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 25, 53, 56-60, 61, 63, 70 [12] Циано-SiO2 Тексан-Me2CO (6:4), MeCN-H2O (2:8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 24, 26, 34, 2		The state of the s	3. 10. 12. 13. 17 18 23 24 26 33 34 47	
EtOAc-EtOH – H ₂ O (16 : 2 : 1) MeOH–H ₂ O (65 : 35) 19, 56, 61 [23] ОФ-SiO ₂ МеОН–H ₂ O (4 : 6), MeCN–H ₂ O (35 : 65), 0.1% 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 18, 24, 26, 33, 34, 47, 18, 25, 25, 56–60, 61, 63, 70 [12] Циано-SiO ₂ Тексан–Me ₂ CO (6 : 4), MeCN–H ₂ O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 23, 24, 26, 33, 34, 47, 18, 24, 26, 34, 26				
ОФ-SiO ₂ МеОН–H ₂ O (4 : 6), MеСN–H ₂ O (35 : 65), 0.1% ТФУ/МеСN–H ₂ O (35 : 65), ТГФ–H ₂ O (45 : 55) Диано-SiO ₂ Тексан–Me ₂ CO (6 : 4), MеCN–H ₂ O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12] 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12]		1		
ТФУ/MeCN-H ₂ O (35 : 65), ТГФ-H ₂ O (45 : 55) 52, 53, 56-60, 61, 63, 70 [12] Циано-SiO ₂ Тексан-Me ₂ CO (6 : 4), MeCN-H ₂ O (2 : 8) 70, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]		· · · · · · · · · · · · · · · · · · ·		
Циано-SiO2 гексан-Me ₂ CO (6 : 4), MeCN-H ₂ O (2 : 8) 3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56-60, 61, 63, 70 [12]	OФ-SiO ₂		3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47,	
тексан—ме ₂ со (6 : 4), мес n—n ₂ о (2 : 8) 52, 53, 56–60, 61, 63, 70 [12]		$T\Phi Y/MeCN-H_2O$ (35 : 65), $T\Gamma \Phi - H_2O$ (45 : 55)		
52, 53, 50-60, 61, 63, 70 [12]	Пиано-SiO-	гексан-Ме ₂ СО (6 · 4) МеСN-Н ₂ О (2 · 8)	3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47,	
		1000011 1110200 (0 . T), 1110011-1120 (2 . 0)	52 , 53 , 56–60 , 61 , 63 , 70 [12]	

 $^{^*}$ CH₂Cl₂ – дихлорэтан; EtOAc – этилацетат; EtOH – этанол; Me₂CO – ацетон; MeCN – ацетонитрил; MeOH – метанол; TГ Φ – тетрагидрофуран; T Φ У – трифторуксусная кислота.

Таблица 5. Условия ВЭЖХ разделения фитоэкдистероидов Serratula и Klasea

Колонка	Элюент	Соединения
	Препаративная ВЭЖХ (нормальн	ая фаза)
	CH ₂ Cl ₂ –i-PrOH–H ₂ O	7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15]; 24, 26,
	(125:25:2,125:15:1)	31 , 32 , 34–36 , 56 , 64–69 [28]
Zorbax-SIL (250 $\text{mm} \times 9,4 \text{ mm}$	CH ₂ Cl ₂ -i-PrOH-H ₂ O (125:40:3);	19, 56, 61 [23]
× 5 мкм)	CH ₂ Cl ₂ -i-PrOH-H ₂ O (125 : 25 : 2);	
	ЦГ $-i$ -PrOH $-H_2$ O (80 : 40 : 3).	
	ЦГ $-i$ -PrOH $-H_2$ O (100 : 40 : 3)	41 , 42 , 50 [25]
Zankan SH (250 x 4 6	CH ₂ Cl ₂ -i-PrOH-H ₂ O (125 : 50 : 5;	3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52
Zorbax SIL (250 mm × 4,6 mm	125:40:3; 125:30:2; 125:25:2),	53, 56–60, 61, 63, 70 [12]; 9, 53, 55 [16]; 28,
× 5 мкм)	ЦГ $-$ i-PrOH $-$ H $_2$ O (100 : 40 : 3)	51 [23]; 30 , 49 , 59 [26]
	Препаративная ВЭЖХ (обращен	ная фаза)
Diasorb 130 C ₁₆ T	H ₂ O–MeOH–BuOH (45 : 30 : 1);	3 , 17 , 24 [21]
$(250 \text{ mm} \times 15 \text{ mm} \times 7,5 \text{ mkm})$	MeOH-H ₂ O (45 : 55)	
Reprosil-Pur C ₁₈ -AQ	MeCN-H ₂ O	4–6, 20 [13]
$(250 \text{ mm} \times 10 \text{ mm})$		
Separon C ₁₈	MeOH-H ₂ O (60:40)	3, 26, 52, 56, 58, 62, 67 [29]
$(125 \text{ мм} \times 25 \text{ мм} \times 10 \text{ мкм})$		
Separon C ₁₈	MeOH-H ₂ O (60:40)	26 , 56 [37]
$(250 \text{ mm} \times 10 \text{ mm} \times 5 \text{ mkm})$		
	MeCN-H ₂ O (23:77)	3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52
Zorbax SB-C ₁₈		53 , 56–60 , 61 , 63 , 70 [12]
$(250 \text{ mm} \times 4.6 \text{ mm} \times 5 \text{ mkm})$	MeCN-H ₂ O (35:65)	28 , 51 [23]; 38 , 39 [27]; 41 , 42 , 50 [25]
	MeOH-H ₂ O (80:20)	9 , 53 , 55 [16]
	Аналитическая ВЭЖХ (нормальн	ая фаза)
	ИО-i-PrOH-H ₂ O (100 : 30 : 2)	24 , 26 , 31 , 32 , 34–36 , 56 , 64–69 [28]
Zorbax-SIL	ЦГ $-i$ -PrOH $-H_2$ O (100 : 30 : 2)	7 , 8 , 11 , 15 , 24 , 27 , 65 – 67 , 70 , 74 [15]
(250 mm × 4,6 mm × 5 mkm)	CH ₂ Cl ₂ -i-PrOH-H ₂ O (125 : 50 : 5;	3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52
(230 MM ^ 4,0 MM ^ 3 MKM)	125:40:3; 125:30:2; 125:25:2),	53 , 56–60 , 61 , 63 , 70 [12]
	ЦГ $-i$ -PrOH $-H_2$ O (100 : 40 : 3)	
	Аналитическая ВЭЖХ (обращенн	ная фаза)
Separon C ₁₈	MeOH-H ₂ O (60 : 40)	3, 26, 52, 56, 58, 62, 67 [29]
$(125 \text{ mm} \times 4 \text{ mm} \times 5 \text{ mkm})$		
Spherisorb 5ODS2	МеСN−0,1% ТФУ/H ₂ O	24, 26, 31, 32, 34–36, 56, 64–69 [28]
$(250 \text{ mm} \times 4.6 \text{ mm} \times 5 \text{ mkm})$	$(20:80 \rightarrow 70:30;23:77)$	
(230 MM ^ 4,0 MM ^ 3 MKM)	MeOH-H ₂ O (60 : 40, 50 : 50)	7, 8, 11, 15, 24, 27, 65–67, 70, 74 [15]
Zarbay ODS	MeCN-H ₂ O (20 : 80)	16, 52, 56, 62 [20]
Zorbax ODS (250 mm × 4,6 mm × 5 mkm)	MeCN-H ₂ O (23:77)	3, 10, 12, 13, 17, 18, 23, 24, 26, 33, 34, 47, 52, 53, 56–60, 61, 63, 70 [12]

 * BuOH — бутанол; CH₂Cl₂ — дихлорэтан; i-PrOH — изопропанол; MeCN — ацетонитрил; MeOH — метанол; ИО — изооктан; ТФУ — трифторуксусная кислота; ЦГ — циклогексан.

Выводы

Растительные виды родов Serratula и Klasea являются источником фитоэкдистероидов – группы биологически активных и хозяйственно ценных природных соединений, хеморазнообразие которых составляет 76 соединений. Несмотря на это, к настоящему моменту времени сделать выводы о химической дифференциации родов Serratula и Klasea по экдистероидному профилю не представляется возможным ввиду недостаточного объема научной информации. Принятие 20-гидроксиэкдизона (56) в качестве химического маркера родов Serratula и Klasea не может считаться правильным, так как данное соединение присутствует практически во всех экдистероид-содержащих растениях. Распределение остальных соединений не позволяет сформировать стройную химическую картину для данных родов. Однако следует отметить, что практически во всех видах Klasea было выявлено присутствие инокостерона (14), отсутствующего в роде Serratula, даже в наиболее изученном виде S. coronata. В этой связи актуальность дальнейшего углубленного изучения видов Serratula и Klasea не вызывает сомнения. Что касается методов выделения и разделения фитоэкдистероидов Serratula и Klasea, то можно отметить тот факт, что они разнообразны и позволяют достигнуть требуемого уровня селективности. Использование громоздких и многостадийных схем хроматографического разделения суммарных фракций в большинстве случаев оправдано, поскольку это приводит к получению новых соединений и уточнению химического состава отдельных видов.

Список литературы

- Cassini A.H.G. Compositae II. Monographs in Systematic Botany from the Missouri Botanical Garden. 1825. Vol. 54, Pp. 1–190.
- 2. Boissier E. Serratula L. // Flora Orientalis. 1875. Vol. 3. Pp. 585–591.
- 3. Флора СССР. М.; Л., 1963. Т. XXVIII. С. 265–302.
- 4. Wagenitz G., Hellwig F.H. Evolution of characters and phylogeny of the Centaureinae // *Compositae*: Systematics. Eds. D.J.N. Hind, H.G. Beentje HG. Kew: Royal Botanic Gardens, 1994. Pp. 491–510.
- 5. Martins L., Hellwig F.H. Systematic position of the genera *Serratula* and *Klasea* (Cardueae, Asteraceae) inferred from ETS and ITS sequence data and new combinations in *Klasea* // Taxon. 2005. Vol. 54. Pp. 632–638.
- Фитоэкдистероиды. СПб.: Наука, 2003. 293 с.
- Báthori M., Tóth N., Hunyadi A., Márki A., Zádor E. Phytoecdysteroids and anabolic-androgenic steroids. Structure and effects on humans // Curr. Med. Chem. 2008. Vol. 15. Pp. 75–91.
- 8. Yatsyuk Ya.K., Segel G.M. The isolation of ecdysterone // Chem. Nat. Comp. 1970. Vol. 6. Pp. 284–284.
- 9. Tang H.-J., Fan C.-L., Wang G.-Y., Wei W., Wang Y., Ye W.-C. Chemical constituents from roots tubers of *Serratula chinensis* // Chin. Trad. Herb. Drugs. 2014. Vol. 45. Pp. 906–912.
- 10. Ling T., Zhang Z., Xia T., Ling W., Wan X. Phytoecdysteroids and other constituents from the roots of *Klaseopsis chinensis* // Biochem. Syst. Ecol. 2009. Vol. 37. Pp. 49–51.
- Miladera K., Saatov Z., Kholodova Yu.D., Gorovits M.B., Shashkov A.S., Abubakirov N.K. Phytoecdysteroids of plants of the genus *Serratula*. Ajugasterone C 20,22-monoacetonide from *Serratura wolffii* // Chem. Nat. Comp. 1992. Vol. 28. Pp. 59–63.
- 12. Hunyadi A., Gergely A., Simon A., Tóth G., Veress G., Báthori M. Preparative-scale chromatography of ecdysteroids of *Serratula wolffii* Andrae // J. Chrom. Sci. 2007. Vol. 45. Pp. 76–86.
- 13. Galyautdinov I.V., Sadretdinova Z.R., Muslimov Z.S., Gareev V.F., Khalilov L.M., Odinokov V.N. New minor phytoecdysteroids from the juice of *Serratula coronata* L. (Asteraceae) // J. Med. Plants Stud. 2016. Vol. 4. Pp. 30–34.
- 14. Dai, J.-Q., Cai Y.-J., Shi Y.-P., Zhang Y.-H., Liu Z.-L., Yang L., Li Y. Antioxidant activity of ecdysteroids from *Serratula strangulata* // Chin. J. Chem. 2002. Vol. 20. Pp. 497–501.
- Odinokov V.N., Kumpun S., Galyautdinov I.V., Todeschi E.N, Veskina N.A., Khalilov L.M. Low polarity phytoecdysteroids from the juice of *Serratula coronata* L. (Asteraceae) // Collect. Czech. Chem. Commun. 2005. Vol. 70. Pp. 2038–2052.
- Takács M., Simon A., Liktor-Busa E., Bathori M., Zsila F., Bikadi Z., Horvath P., Veress G., Gergely A., Tóth G. Structure and stereochemistry of novel ecdysteroids from the roots of *Serratula wolffii* // Magn. Res. Chem. 2010. Vol. 48. Pp. 386–391.
- 17. Abubakirov N.K. Ecdysteroids of flowering plants (Angiospermae) // Chem. Nat. Comp. 1981. Vol. 17. Pp. 489–503.
- 18. Володина С.О. Экдистероидсодержащие растения: Ресурсы и биотехнологическое значение: дисс. ... канд. биол. наук. Сыктывкар, 2006. 195 с.
- 19. Hunyadi A., Tóth G., Simon A., Mák M., Kele Z., Máthé I., Báthori M. Two new ecdysteroids from *Serratula wolffii* // J. Nat. Prod. 2004. Vol. 67. Pp. 1070–1072.
- 20. Vorob'eva A.N., Rybin V.G., Zarembo E.V., Boltenkov E.V. Phytoecdysteroids from *Serratula centauroides* // Chem. Nat. Comp. 2005. Vol. 41. Pp. 105–106.
- 21. Volodin V.V., Alexeeva L.I., Kolegova N.A., Sarker S.D., Šik V., Lafont R., Dinan L. Further ecdysteroids from *Serratula coronata* L. (Asteraceae) // Biochem. Syst. Ecol. 1998. Vol. 26. Pp. 459–461.
- 22. Bathori M., Mathe I., Girault J., Kalasz H., Lafont R. Isolation and structural elucidation of two plant ecdysteroids, gerardiasterone and 22-epi-20-hydroxyecdysone // J. Nat. Prod. 1998. Vol. 61. Pp. 415–417.
- 23. Rudel D., Bathori M., Gharbi J., Girault J.-P., Racz I., Melis K., Szendrei K., Lafont R. New ecdysteroids from *Serratula tinctoria* // Planta Med. 1992. Vol. 92. Pp. 358–364.
- Simon A., Liktor-Busa E., Tóth G., Kele Z., Groska J., Báthori M. Additional minor phytoecdysteroids of Serratula wolffii // Helv. Chim. Acta. 2008. Vol. 91. Pp. 1640–1645.
- 25. Ványolós A., Béni, Z., Dékny M., Simon A., Báthori M. Novel ecdysteroids from *Serratula wolffii //* Scientific World J. 2012. Vol. 2012. Art. No 651275.
- 26. Liktor-Busa E., Simon A., Tóth G., Báthori M. The first two ecdysteroids containing a furan ring from *Serratula wolffii* // Tetrahedr. Lett. 2008. Vol. 49. Pp. 1738–1174.
- Novosel'skaya I.L., Gorovits M.B., Abubakirov N.K. Phytoecdysones of Serratula IV. Sogdysterone // Chem. Nat. Comp. 1975. Vol. 11. Pp. 445–446.
- 28. Simon A., Tóth G., Liktor-Busa E., Kele Z., Takács M., Gergely A., Báthori M. Three new steroids from the roots of *Serratula wolffii* // Steroids. 2007. Vol. 72. Pp. 751–755.
- 29. Odinokov V.N., Galyautdinov I.V., Nedopekin D.V., Khalilov L.M., Shashkov A.S., Kachala V.V., Dinan L., Lafont R. Phytoecdysteroids from the juice of *Serratula coronata* L. (Asteraceae) // Insect Biochem. Molec. Biol. 2002. Vol. 32. Pp. 161–165.
- 30. Liktor-Busa E., Simon A., Tóth G., Fekete G., Kele Z., Báthori M. Ecdysteroids from *Serratula wolffii* roots // J. Nat. Prod. 2007. Vol. 70. Pp. 884–886.
- 31. Tuleuov B.I. 20-Hydroxyecdysone content of several representatives of the families Asteraceae and Caryophyllaceae // Chem. Nat. Comp. 2009. Vol. 45. Pp. 762–763.

- 32. Nowak G., Nawrot J., Latowski K. Arbutin in Serratula quinquefolia // Acta Soc. Bot. Polon. 2009. Vol. 78. Pp. 137–140.
- 33. Odinokov V.N., Galyautdinov I.V., Fatykhov A.A., Khalilov L.M. A new phytoecdysteroid // Russ. Chem. Bull. 2000. Vol. 49. Pp. 1923–1924.
- 34. Zatsny I.L., Gorovits M.B., Abubakirov N.K. Ecdysterone from *Serratula sogdiana* // Chem. Nat. Comp. 1971. Vol. 7. Pp. 822–822.
- 35. Zatsny I.L., Gorovits M.B., Abubakirov N.K. Phytoecdysones of *Serratula* II. Viticosterone E from *Serratula sogdiana* and its partial synthesis // Chem. Nat. Comp. 1973. Vol. 9. Pp. 170–173.
- 36. Kholodova Yu.D., Baltaev U., Volovenko V.O., Gorovits M.B., Abubakirov N.K. Phytoecdysones of *Serratula xeranthemoides* // Chem. Nat. Comp. 1979. Vol. 15. Pp. 144–146.
- 37. Odinokov V.N., Galyautdinov I.V., Mel'nikova D.A., Muslimov Z.S., Khalilov L.M., Denisenko O.N., Mogilenko T.G., Zaripova E.R., Zakirova L.M. Isolation and identification of phytoecdysteroids from juice of *Serratula quinquefolia* // Chem. Nat. Comp. 2013. Vol. 49. Pp. 392–394.

Поступило в редакцию 26 апреля 2017 г.

После переработки 26 мая 2017 г.

Olennikov D.N.*, Kashchenko N.I. PHYTOECDYSTEROIDS OF SERRATULA L. AND KLASEA CASS. GENERA: CHEMODIVERSITY, METHODS OF ISOLATION AND ANALYSIS

Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Science, ul. Sakh'yanovoy, 6, Ulan-Ude, 670047 (Russia), e-mail: olennikovdn@mail.ru

Serratula L. and Klasea Cass. are two systematically related genera of Asteraceae family containing phytoecdysteroids, a group of natural terpene compounds with various biological activity. Beginning from the 1970s, 76 phytoecdysteroids were isolated and identified in 13 species of Serratula and 5 species of Klasea. This review presented information on the chemodiversity of phytoecdysteroids of Serratula and Klasea genera and their occurrence in individual species. It was shown that the structural features of Serratula and Klasea phytoecdysteroids include the presence of a complete side chain at C-20 atom as well as 5 to 7 hydroxyl groups. Among the species studied, the most investigated were S. coronata, S. tinctoria and S. chinensis with 50, 21 and 19 known compounds, respectively. Also in the review the information on the methods of extraction, isolation and analysis of phytoecdysteroids of the Serratula and Klasea genera was included. The special attention was paid to the data on chromatographic separation of phytoecdysteroids using column, thin-layer and high-performance liquid chromatography on the various sorbents. The information presented in the review demonstrated the perspectiveness of Serratula and Klasea species as sources of phytoecdysteroids.

Keywords: Serratula, Klasea, phytoecdysteroids, chemodiversity, isolation, chromatography, HPLC.

_

^{*} Corresponding author.

References

- Cassini A.H.G. Compositae II. Monographs in Systematic Botany from the Missouri Botanical Garden, 1825, vol. 54, pp. 1–190.
- 2. Boissier E. Flora Orientalis, 1875, vol. 3, pp. 585–591.
- 3. Flora SSSR. [Flora of the USSR]. Moskva, Leningrad, 1963, vol. XXVIII, pp. 265–302. (in Russ.).
- Wagenitz G., Hellwig F.H. Compositae: Systematics, eds. D.J.N. Hind, H.G. Beentje, HG. Kew, Royal Botanic Gardens, 1994, pp. 491–510.
- 5. Martins L., Hellwig F.H. *Taxon*, 2005, vol. 54, pp. 632–638.
- 6. Fitoekdisteroidy. [Phytoecdysteroids]. Sankt-Peterburg, 2003, 293 p. (in Russ.).
- 7. Báthori M., Tóth N., Hunyadi A., Márki A., Zádor E. Curr. Med. Chem., 2008, vol. 15, pp. 75–91.
- 8. Yatsyuk Ya.K., Segel G.M. Chem. Nat. Comp., 1970, vol. 6, pp. 284–284.
- 9. Tang H.-J., Fan C.-L., Wang G.-Y., Wei W., Wang Y., Ye W.-C. Chin. Trad. Herb. Drugs, 2014, vol. 45, pp. 906–912.
- 10. Ling T., Zhang Z., Xia T., Ling W., Wan X. Biochem. Syst. Ecol., 2009, vol. 37, pp. 49–51.
- 11. Miladera K., Saatov Z., Kholodova Yu.D., Gorovits M.B., Shashkov A.S., Abubakirov N.K. *Chem. Nat. Comp.*, 1992, vol. 28, pp. 59–63.
- 12. Hunyadi A., Gergely A., Simon A., Tóth G., Veress G., Báthori M. J. Chrom. Sci., 2007, vol. 45, pp. 76–86.
- 13. Galyautdinov I.V., Sadretdinova Z.R., Muslimov Z.S., Gareev V.F., Khalilov L.M., Odinokov V.N. *J. Med. Plants Stud.*, 2016, vol. 4, pp. 30–34.
- 14. Dai, J.-Q., Cai Y.-J., Shi Y.-P., Zhang Y.-H., Liu Z.-L., Yang L., Li Y. Chin. J. Chem., 2002, vol. 20, pp. 497–501.
- 15. Odinokov V.N., Kumpun S., Galyautdinov I.V., Todeschi E.N, Veskina N.A., Khalilov L.M. Collect. Czech. Chem. Commun., 2005, vol. 70, pp. 2038–2052.
- Takács M., Simon A., Liktor-Busa E., Bathori M., Zsila F., Bikadi Z., Horvath P., Veress G., Gergely A., Tóth G. Magn. Res. Chem., 2010, vol. 48, pp. 386–391.
- 17. Abubakirov N.K. Chem. Nat. Comp., 1981, vol. 17, pp. 489-503.
- 18. Volodina S.O. *Ekdisteroidsoderzhashchie rasteniia: Resursy i biotekhnologicheskoe znachenie: diss. ... kand. biol. nauk.* [Ecdysteroid-containing plants: Resources and biotechnological significance: diss. ... cand. biol. sciences]. Syktyvkar, 2006, 195 p. (in Russ.).
- 19. Hunyadi A., Tóth G., Simon A., Mák M., Kele Z., Máthé I., Báthori M. J. Nat. Prod., 2004, vol. 67, pp. 1070–1072.
- 20. Vorob'eva A.N., Rybin V.G., Zarembo E.V., Boltenkov E.V. Chem. Nat. Comp., 2005, vol. 41, pp. 105–106.
- Volodin V.V., Alexeeva L.I., Kolegova N.A., Sarker S.D., Šik V., Lafont R., Dinan L. Biochem. Syst. Ecol., 1998, vol. 26, pp. 459–461.
- 22. Bathori M., Mathe I., Girault J., Kalasz H., Lafont R. J. Nat. Prod., 1998, vol. 61, pp. 415-417.
- 23. Rudel D., Bathori M., Gharbi J., Girault J.-P., Racz I., Melis K., Szendrei K., Lafont R. *Planta Med.*, 1992, vol. 92, pp. 358–364.
- 24. Simon A., Liktor-Busa E., Tóth G., Kele Z., Groska J., Báthori M. Helv. Chim. Acta, 2008, vol. 91, pp. 1640-1645.
- 25. Ványolós A., Béni, Z., Dékny M., Simon A., Báthori M. Scientific World J., 2012, vol. 2012, art. no. 651275.
- 26. Liktor-Busa E., Simon A., Tóth G., Báthori M. Tetrahedr. Lett., 2008, vol. 49, pp. 1738–1174.
- 27. Novosel'skaya I.L., Gorovits M.B., Abubakirov N.K. Chem. Nat. Comp., 1975, vol. 11, pp. 445-446.
- 28. Simon A., Tóth G., Liktor-Busa E., Kele Z., Takács M., Gergely A., Báthori M. Steroids, 2007, vol. 72, pp. 751–755.
- 29. Odinokov V.N., Galyautdinov I.V., Nedopekin D.V., Khalilov L.M., Shashkov A.S., Kachala V.V., Dinan L., Lafont R. *Insect Biochem. Molec. Biol.*, 2002, vol. 32, pp. 161–165.
- 30. Liktor-Busa E., Simon A., Tóth G., Fekete G., Kele Z., Báthori M. J. Nat. Prod., 2007, vol. 70, pp. 884–886.
- 31. Tuleuov B.I. Chem. Nat. Comp., 2009, vol. 45, pp. 762-763.
- 32. Nowak G., Nawrot J., Latowski K. Acta Soc. Bot. Polon., 2009, vol. 78, pp. 137–140.
- 33. Odinokov V.N., Galyautdinov I.V., Fatykhov A.A., Khalilov L.M. Russ. Chem. Bull., 2000, vol. 49, pp. 1923–1924.
- 34. Zatsny I.L., Gorovits M.B., Abubakirov N.K. Chem. Nat. Comp., 1971, vol. 7, pp. 822–822.
- 35. Zatsny I.L., Gorovits M.B., Abubakirov N.K. Chem. Nat. Comp., 1973, vol. 9, pp. 170-173.
- 36. Kholodova Yu.D., Baltaev U., Volovenko V.O., Gorovits M.B., Abubakirov N.K. *Chem. Nat. Comp.*, 1979, vol. 15, pp. 144–146.
- 37. Odinokov V.N., Galyautdinov I.V., Mel'nikova D.A., Muslimov Z.S., Khalilov L.M., Denisenko O.N., Mogilenko T.G., Zaripova E.R., Zakirova L.M. *Chem. Nat. Comp.*, 2013, vol. 49, pp. 392–394.

Received April 26, 2017

Revised May 26, 2017