Электронный дополнительный материал

УДК 54.061:54.062:615.322

АНАЛИЗ С-ГЛИКОЗИДОВ ФЛАВОНОВ И ПРОДУКТОВ СТУПЕНЧАТОГО ГИДРОЛИЗА ИХ АЦЕТАТОВ В ЛИСТЬЯХ *RUBUS CHAMAEMORUS* L.*

© А.К. Уэйли¹, А.О. Понкратова^{1**}, А.А. Орлова¹, Е.Б. Серебряков², С.И. Селиванов², С.В. Кривощеков³, М.В. Белоусов³, П. Прокш⁴, В.Г. Лужанин¹

 ¹ Санкт-Петербургский государственный химико-фармацевтический университет, ул. Проф. Попова, 14, Санкт-Петербург, 197376 (Россия), e-mail: anastasiya.ponkratova@yandex.ru
² Санкт-Петербургский государственный университет, Университетский пр., 26, Санкт-Петербург, 198504 (Россия)
³ Сибирский государственный медицинский университет, Московский тракт, 2, Томск, 634050 (Россия)
⁴ Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, 40225 (Germany)

^{*} Полный текст статьи опубликован: Уэйли А.К., Понкратова А.О., Орлова А.А., Серебряков Е.Б., Селиванов С.И., Кривощеков С.В., Белоусов М.В., Прокш П., Лужанин В.Г. Анализ С-гликозидов флавонов и продуктов ступенчатого гидролиза их ацетатов в листьях *Rubus chamaemorus* L. // Химия растительного сырья. 2021. №2. С. 257–265. DOI: 10.14258/jcprm.2021029185.

^{**} Автор, с которым следует вести переписку.

Рис. 1. Заторможенное вращение вокруг С-гликозидной связи, приводящее к существованию двух взаимопревращающихся ротамеров в растворе

Рис. 2. Влияние повышения температуры анализа на полученный ¹Н-ЯМР спектр смеси двух Сгликозидов, растворенных в DMSO-*d*₆. При 5.0 м.д. представлены сигналы аномерных протонов остатка α-L-рамнозы. При 0.5 м.д. представлены сигналы протонов метильной группы α-L-рамнозы

Таблица 1. Время удерживания для соединений 1-7 с их УФ-максимумами поглощения

Название соединений	Время удерживания, мин	Максимумы УФ-поглощения, нм
Соединение 1 (эмбинин)	22.96	271, 333
Соединение 2 2"-ацетилэмбинин)	24.19	271, 334
Соединение 3 (3"-ацетилэмбинин)	24.92	271, 334
Соединение 4 (4"-ацетилэмбинин)	24.41	271, 333
Соединение 5 2"',3"'-диацетилэмбинин)	26.50	271, 334
Соединение 6 (2"',4"'-диацетилэмбинин)	26.74	271, 333
Соединение 7 (3"',4"'-диацетилэмбинин)	27.08	271, 333

Соединение	Характерные осколочные ионы с их вероятным составом,
	m/z
Эмбинин (1)	654.16 [M + K] ⁺
	629.19 [M + Na] ⁺
	607.20 [M + H] ⁺
	589.17 [(M + H) - H ₂ O] ⁺
	$487.20 [(M + H) - C_8H_7O]^+$
	$461.15 [(M + H) - C_6H_{11}O_4]^+$
	$443.14 [(M + H) - C_6 H_{11}O_5]^+$
	$425.15 [(M + H) - C_6H_{11}O_5 - H_2O]^+$
2 ^{'''} -ацетилэмбинин (2)	687.14 [M + K] ⁺
3'''-ацетилэмбинин (3)	671.17 [M + Na] ⁺
4'''-ацетилэмбинин (4)	649.20 [M + H] ⁺
	631.20 [(M + H) - H ₂ O] ⁺
	$529.18 [(M + H) - C_8 H_7 O]^+$
	$461.16 [(M + H) - C_6 H_{11} O_4]^+$
	$443.14 [(M + H) - C_6 H_{11} O_5]^+$
	$425.13 [(M + H) - C_6H_{11}O_5 - H_2O]^+$
	$407.14 [(M + H) - C_6H_{11}O_5 - H_2O - H_2O]^+$
	$365.12 [(M + H) - C_6H_{11}O_5 - H_2O - CH_3COOH]^+$
	341.13
2"",3"'-диацетилэмбинин (5)	$729.29 [M + K]^+$
2''',4'''-диацетилэмбинин (6)	713.17 [M + Na] ⁺
3''',4'''-диацетилэмбинин (7)	691.21 [M + H] ⁺
	$673.19 [(M + H) - H_2O]^+$
	571.17 [(M + H) – C ₈ H ₇ O] ⁺
	$461.15 [(M + H) - C_6H_{11}O_4]^+$
	$443.15 [(M + H) - C_6H_{11}O_5]^+$
	$425.14 [(M + H) - C_6 H_{11}O_5 - H_2O]^+$
	341 14

Таблица 2. Псевдомолекулярные и дочерние ионы, полученные путем ESI-MS/MS фрагментации соединений 1-7 в положительном режиме ионизации

Рис. 3. ESI масс-спектр эмбинина (1) в положительном режиме ионизации

Рис. 4. ESI масс-спектр ацетилэмбининов (2-4) в положительном режиме ионизации

Рис. 5. ESI масс-спектр диацетилэмбининов (5-7) в положительном режиме ионизации