УДК 676.1

СТРУКТУРНЫЙ АНАЛИЗ ТРАВЯНОЙ ЦЕЛЛЮЛОЗЫ

© О.К. Нугманов*, Н.П. Григорьева, Н.А. Лебедев

Открытое акционерное общество «Научно-исследовательский институт по нефтепромысловой химии» (ОАО «НИИнефтепромхим»), ул. Н. Ершова, 29, Казань, 420061 (Россия), e-mail: info@neftpx.ru

Проведен сравнительный анализ структуры травяной целлюлозы (из льна, миксантуса, рысы и камыша) с хлопковой и древесной методами ИК-спектроскопии, сканирующей электронной микроскопии и порошковой рентгендирафмометрии. Установлено, что по химическому строению и структуре травяная целлюлоза, полученная методом термомеханохимической активации, практически идентична хлопковой.

Ключевые слова: хлопковая, древесная, травяная целлюлозы, термомеханохимический способ, структура целлюлозы, ИК-спектроскопия, порошковая рентгендирафмометрия, сканирующая электронная микроскопия.

Введение

Промышленные процессы переработки целлюлозы являются, как правило, гетерогенными, протекают в диффузионном режиме, что предопределяет зависимость глубины и скорости протекания превращений от строения твердой полимерной фазы. В целлюлозе можно выделить несколько неравномерных уровней структурной организации. Это наномолекулярная структура с характерным расстоянием от нескольких десятков ангстрон и выше и два низших уровня – кристаллический и молекулярный с характерным расстоянием порядка одного ангстрона. Наиболее информативными методами изучения наноразмерной структуры целлюлозы являются оптическая и электронная микроскопия, рентгеновская дифракция в больших и малых углах, ИК- и ЯМР-спектроскопия и ряд других.

Интересно отметить, что исторически для извлечения более полной структурной информации в основном использовались целлюлозосодержащие образцы недревесного происхождения – рани, хлопок, конопля, лен, джут и прочее, отличающиеся высокой ориентацией волокон и степенью кристалличности [1–11].

Цель настоящей статьи – сравнительная идентификация наномолекулярной, кристаллической и молекулярной структур и свойств целлюлозы, выделенных из травяных культур различного происхождения методом термомеханохимической активации [12–18].

Идентификация структуры и свойств недревесной целлюлозы является необходимым научным этапом для технологического освоения производства целлюлоз из различных травяных культур как дополнительного (резервного) источника углеводного сырья. Решение этой проблемы приобретает особую актуальность для южных и дальневосточных регионов Российской Федерации, а также республик Средней Азии, отличающихся острой дефицитом древесины и избыточным промышленным потреблением биомассы (рапс, камыш, рис, подсолнечник, топинамбур, гуза-ная и т.д.).

Экспериментальная часть

Объектами исследования были образцы травяных целлюлоз, полученных по укороченному (небеленому) и полному (беленому) технологическим циклам [14–17], из льна, миксантуса, рапса и камыша.
В качестве контрольных образцов использовали хлопковую (ОАО «Нижегородский завод «Октябрь», г. Нижний Новгород) и древесную (Советский целлюлозно-бумажный комбинат, Калининградская область, г. Советск) целлюлозы.

Травяную целлюлозу получали термомеханохимическим способом на пилотной установке АШБ-50 (аппарат шnekовый буцильный, диаметр валов 50 мм).

Исследования полученных образцов целлюлоз проводили методами ИК-спектроскопии, порошковой рентген-дифрактометрии и сканирующей электронной микроскопии в отделе физико-химических исследований ИОФХ им. А.Е. Арбузова КазНЦ РАН.

ИК-спектры образцов снимали на ИК-Фурье-спектрометре Tensor 27 фирмы БРУКЕР, Германия. Образцы целлюлозы прессовались в виде таблеток с бромистым калием. Результаты регистрировали с помощью ИК микроскопа HYPERION 2000, фирмы БРУКЕР, Германия, в комплекте со спектрометром Tensor 27.

Порошковые дифрактограммы получали на автоматическом рентгеновском дифрактометре Bruker D8 Advance, оборудованном приставкой Vario и линейным координационным детектором Vantec. Использовали Cu Kα излучение (л. 1,54063 Å), монохроматизированное изогнутым монохроматором Йоханссона, режим работы рентгеновской трубки 40 kV, 40 mA. Эксперименты выполняли при комнатной температуре в геометрии Брегг-Бренгана с плоским образцом.

Дифрактограммы регистрировались в диапазоне углов рассеяния 20 – 2–60°, шаг – 0,008°, время набора спектра в точке – 0,1–0,5 сек. Для каждого из образцов получали несколько дифрактограмм в различных экспериментальных режимах и с различным временем набора данных. Для взятых соединений из базы данных по порошковой дифрактометрии (ICDD PDF-2, Release 2005) были найдены соответствующие демонстрационные рентгеновские дифрактограммы, сравнение с которыми полученных экспериментальных дифрактограмм позволило проидентифицировать вещества.

Анализ морфологической структуры целлюлоз проводили методом сканирующей электронной микроскопии на электронном микроскопе НІТШІІІ TM-1000. Образцы сканировались с различным увеличением. Изображения сканированных объектов сохранялись в виде стандартного JPG-файла, а также файла в формате TXT с параметрами проведенного эксперимента.

Обсуждение результатов

Сопоставлены ИК-спектры контрольных образцов хлопковой и древесной целлюлоз с ИК-спектрами бельных и небельных целлюлоз (рис. 1, 2): из льна, мискантуса, рапса и камыша.

Анализ рисунков показал, что в спектрах всех образцов наблюдаются полосы, характерные для целлюлозы:

– область 3700–3100 см⁻¹ – валентные колебания гидроксильных групп, вовлеченных внутри- и межмолекулярные водородные связи;

– область 3000–2800 см⁻¹ – валентные колебания C-H-связей в метиленных и метиновых группах целлюлозы;

– область 1635 см⁻¹ – молекулы адсорбированной воды;

– область 1500–900 см⁻¹ – различные колебания C-H-, C-O- и O-H-связей, колебания гликозидной связи и глукозирицинального кольца целлюлозы;

– область 860–400 см⁻¹ – различные колебания пиранозного кольца и деформационных колебаний гидроксильных групп.

Из рисунков видно, что ИК-спектры целлюлоз травянистого происхождения из льна (бельной и не-бельной), мискантуса (беленной и небеленной), а также камыша (беленной) практически идентичны спектру хлопковой целлюлозы (контрольный образец). В ИК-спектре древесной целлюлозы (контрольный образец) наблюдается плецо около 1733 см⁻¹, относящееся к поглощению карбонильной группы, связанное, по всей видимости, с окислением древесной целлюлозы в процессе ее получения.

В ИК-спектрах травяных целлюлоз из рапса (беленной и небеленной) и камыша (небеленной), помимо полос поглощения, присущих целлюлозе, зафиксированы небольшие по интенсивности полосы неидентифицированной примеси (см. табл.).
Полосы поглощения неидентифицированной примеси

<table>
<thead>
<tr>
<th>Целлюлоза</th>
<th>Полосы поглощения примеси, см⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Из рапса, небеленая</td>
<td>1596 1508 1463 1267 875</td>
</tr>
<tr>
<td>Из рапса, беленая</td>
<td>1597 1508 1459 1268 876</td>
</tr>
<tr>
<td>Из камыша, небеленая</td>
<td>1600 1508 не набл. 1267 не набл.</td>
</tr>
</tbody>
</table>

Примечание. Отсутствие пары полос в спектре целлюлозы из камыша (небеленой) свидетельствует о том, что в этой целлюлозе доля примеси невелика.

Полосы около 1600, 1500 и 875 см⁻¹ могут быть отнесены к колебаниям ароматических фрагментов в молекулах примеси, полоса при 1267 см⁻¹ может быть связана с валентными колебаниями группы –C–O–C–, полоса при 1460 см⁻¹ обусловлена деформационными колебаниями метиленовых групп в молекулах примеси. Можно предположить, что эта примесь является лигнином, поскольку в молекулярной структуре лигнина присутствуют все названные фрагменты.

Беленые и небеленые образцы травяных целлюлоз заметно отличаются по внешнему виду. Тем не менее отсутствует различие между ИК-спектрами беленых и небеленых целлюлоз из льна и мискантузы. Очевидно, что процесс отбелки не сопровождается заметными изменениями молекулярной структуры целлюлозы. В случае с беленными образцами целлюлоз из рапса и камыша в ИК-спектрах наблюдается уменьшение доли неидентифицированной примеси (предположительно лигнина) по сравнению с ИК-спектрами небеленых целлюлоз.

На дифрактограммах всех исследованных образцов наблюдаются хорошо выраженные рефлексы, характерные для упорядоченных кристаллических структур, в которых реализуется дальний порядок. Для взятых образцов в электронной базе данных порошковой дифрактометрии (PDF-2) были найдены соответствующие демонстрационные рентгеновские дифрактограммы. Сравнительный анализ экспериментальных данных показал, что во всех образцах целлюлоз основной кристаллической фазой является кристаллическая мононитрическая форма природной целлюлозы (код соединения № 00-003-0289 по PDF-2).

На рисунке 3 приведены дифрактограммы, полученные для всех исследуемых небеленых и беленых образцов целлюлоз. Штрихами на рисунке показаны положения интерференционных пиков для кристаллической мононитрической формы природной целлюлозы.

Как показали результаты анализа, в основном дифрактограммы всех видов целлюлоз (рис. 3) идентичны и соответствуют дифрактограммам для аморфно-кристаллических веществ. Также для всех исследуемых образцов характерно наличие на дифрактограммах интерференционных пиков той или иной степени выраженности, соответствующих кристаллической фазе целлюлозы. Как видно из сравнения полученных кривых, существенных отклонений углового положения дифракционных пиков для различных образцов не наблюдается, причем положения пиков достаточно хорошо согласуются с положениями пиков демонстрационной кривой.

Рис. 1. ИК-Фурье-спектры целлюлоз:
1 – хлопковая; 2 – древесная; 3 – из льна, небеленая; 4 – из мискантузы, небеленая; 5 – из рапса, небеленая; 6 – из камыша, небеленая

Рис. 2. ИК-Фурье-спектры целлюлоз:
1 – хлопковая; 2 – древесная; 3 – из льна, беленая; 4 – из мискантузы, беленая; 5 – из рапса, беленая; 6 – из камыша, беленая
Рис. 3. Дифрактограммы исследованных образцов целлюлозы: 1 – из хлопка; 2 – из древесины; 3 – из рапса, небелена; 4 – из рапса, белена; 5 – из мискантуса, небелена; 6 – из мискантуса, белена; 7 – из камыша, небелена; 8 – из камыша, белена; 9 – из льна, небелена; 10 – из льна, белена (съемка при неподвижных образцах, (а) – кривые сдвинуты друг относительно друга по оси интенсивностей для наглядности, (б) – кривые наложены друг на друга)

С точки зрения выраженности пиков выделяются образцы хлопковой целлюлозы и беленые и небеленые образцы изо льна. Для двух последних образцов наблюдается наибольшее содержание кристаллической фазы.

На дифрактограммах (рис. 3) образцов целлюлозы из рапса (беленного и небеленного), камыша (небеленного) и льна (беленого), кроме интерференционных пиков, соответствующих кристаллической целлюлозе, наблюдаются рефлексы, указывающие на наличие дополнительного вещества кристаллической структуры.
Электронно-микроскопическое исследование (рис. 4) показало, что хлопковая целлюлоза представляет собой крученые, слегка уплощенные волокна толщиной от 5 до 10 мкм. В древесной целлюлозе, которая, в отличие от хлопковой, имеет небольшую длину, присутствует большое количество уплощенных волокон толщиной от 3 до 10 мкм.

Рис. 4. Микрофотографии целлюлоз различного происхождения (слева увеличение ×1000; справа ×8000):
а – из хлопка; б – из древесины; в – из рапса, небеленая; г – из рапса, беленая (начало)
Рис. 4. Микрофотографии целлюлоз различного происхождения (слева увеличение х1000; справа х8000):
\(d\) – из льна, небеленая; \(e\) – из льна, беленная; \(ж\) – из камыша, небеленая; \(з\) – из камыша, беленная
(окончание)
Волокна небеленной цеплюлозы из рапса толщиной от 4,23 до 22,0 мкм расцепляются на тонкие протяженные волокна. На волокнах видны поры разных размеров от 0,9 до 3,2 мкм. У беленных образцов цеплюлозы из рапса толщина волокон уменьшается до 1,1–13,6 мкм и практически не изменяется размер пор 1,35–3,11 мкм.

Волокна льняной небеленной цеплюлозы скручены из более тонких волокон, толщина которых варьируется от 1,64 до 6,67 мкм. После процесса отбелки волокна становятся прямым и протяженными, но встречаются и скрученные, размером от 2,82 до 7,89 мкм. При увеличении ×8000 на волокнах видны небольшие углубления.

Основную массу небеленной цеплюлозы из камыша составляют плоские волокна толщиной от 6 до 22 мкм с внутренними элементами продольного закручивания. Волокна беленной цеплюлозы камыша уплощенные, средней длины, но с разной структурной поверхности: гладкие, трубчатые, с перфорированной поверхностью. Перфорированная поверхность при большем увеличении представляет собой многослойные структуры, с толщиной слоя от 2 до 6 мкм.

Во всех образцах цеплюлоз, кроме хлопковой, наблюдается присутствие неволокнистых элементов.

Заключение

Обнаружено полное сходство ИК-спектров и рентгенограмм контрольных образцов и цеплюлоз травянистого происхождения. Более того, молекулярная и кристаллическая структуры названных цеплюлоз практически идентичны хлопковой цеплюлозе.

Незначительное отличие ИК-спектров и дифрактограмм цеплюлоз, выделенных из рапса (беленного и небеленного) и камыша (небеленного), связано с присутствием остаточного лигнина. Очевидно, что для устранения лигнина в данных видах сырья необходим «индивидуальный» подход, связанный с корректировкой технологических параметров варки сырья и, возможно, облагораживания и отбели (по методу ТМХА). Однако и в данном виде, как показали испытания, названное сырье вполне пригодно для получения дешевой упаковочной бумаги, тарного картона [17] и других изделий [19–20].

Электронно-микроскопические исследования уже на первых этапах эксперимента выявили определенные различия в морфологической структуре волокон и наличие примесей неволокнистого характера, начиная с древесной цеплюлозы. Кроме того, на волоконцах цеплюлоз различных травяных культур выявлены поры размерами 0,9–3,2 мкм. Данные обстоятельства свидетельствуют о более развитой поверхности цеплюлоз названных культур. Более того, для всех исследованных образцов, кроме древесной, наблюдается более сложная многослойная морфологическая структура волокон, состоящая из более ее тонких образований с поперечными размерами, лежащими в пределах 1,6–6,7 мкм.

Данные эксперимента позволяют допустить, что после интенсивных (гидроксидных) промывок названное сырье может быть использовано для получения изделий медицинского назначения, в частности гигиенической ваты [12], фильтр-вспомогательных материалов и микро kristаллической цеплюлозы [21].

Список литературы
1. Роговина З.А. Химия цеплюлозы. М., 1972. 520 с.
4. Цеплюлоза и ее производные / под ред. Н. Байката и Л. Сегала; пер. с англ. под ред. З.А. Роговина. М., 1974. Т. 2. 510 с.
7. Тарчевский И.А., Марченко Г.Н. Биосинтез и структура цеплюлозы. М., 1985. 280 с.
15. Патент №2378432 (РФ). Способ получения целлюлозы / О.К. Нугманов, Н.П. Григорьева, Н.И. Гайнулин, Н.А. Лебедев // 2010, БИ. №1. 6 с.
16. Нугманов О.К., Нусинович Д.С., Григорьева Н.П., Лебедев Н.А., Курамшина Е.А. Травяная целлюлоза. Технология ее получения и свойства // Эфиры целлюлозы и крахмала, другие химические реагенты и материалы в эффективных технологических жидкостях для строительства, эксплуатации и капитального ремонта нефтяных и газовых скважин: материалы XIV Междунар. науч.-практич. конф. Суджа, 2010. С. 258–263.

Поступило в редакцию 18 августа 2011 г.

Nugmanov O.K.*, Grigoriyeva N.P., Lebedev N.A. STRUCTURAL ANALYSIS OF HERBACEOUS CELLULOSE
JSC NIIneftepromchim, N.Yershov str., 29, Kazan, 420061 (Russia), e-mail: info@neftpx.ru

The comparative analysis of the structure of the herbaceous cellulose (out of flax, silk grass, rape and rush) and the structure of the cotton and wood cellulose was made by the methods of infrared spectroscopy, scanning electron microscopy and X-ray powder diffraction. The herbaceous cellulose extracted by the thermomechanochemical activation was found to be practically identical to the cotton cellulose in chemical composition and structure.

Keywords: cotton, wood and herbaceous cellulose, thermomechanochemical method, cellulose structure, infrared spectroscopy, X-ray powder diffraction and scanning electron microscopy.

* Corresponding author.
References

1. Rogovin Z.A. Khimiia tselliulozy. [Chemistry of cellulose]. Moscow, 1972, 520 p. (in Russ.).
15. Patent 2378432 (RU). (in Russ.).

Received August 18, 2011