Обзоры

УДК 582.661.21:547.9

АМАРАНТ (AMARANTHUS L.): ХИМИЧЕСКИЙ СОСТАВ
И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ (ОБЗОР)

© Г.И. Высоchina

Центральный сибирский ботанический сад СО РАН, ул. Золотодолинская,
101, Новосибирск, 630090 (Россия), e-mail: vysochina_galina@mail.ru

Проведен обзор материалов по химическому составу, биологической активности, использованию в медицине и пищевой промышленности представителей рода Amaranthus L. (Amaranthaceae) мировой флоры. Наличие в надземной части амаранта ценных биологически активных веществ определяет перспективность его использования в производстве пищевых продуктов специального и общего назначения, а также в качестве сырья для получения биологически активных добавок. При выращивании в климатических условиях России выявлены высокая биологическая продуктивность амаранта, засухоустойчивость, питательная ценность зерна и зеленой массы и другие достоинства.

Ключевые слова: Амарант, биологически активные вещества, масло амаранта, антиоксидантная активность.

Род Amaranthus L. — амарант (сем. Amaranthaceae) содержит около 75 видов, произрастающих в теплых и умеренных зонах земного шара [1]. Амарант — ценная культура многоцелевого использования: зерновая, овощная, кормовая, декоративная и техническая. Центром происхождения амаранта является Южная Америка, где растет самое большое количество его видов, разновидностей и форм. Многочисленные представители рода обитают в Северной Америке, Индии, Китае, но это вторичные центры распространения амаранта [2].


Семена амаранта имеют высокую питательную ценность. Из них можно получать муку, крахмал, отруби, масло. В зависимости от вида они содержат 14—20% легкоусвояемого белка, 6—8% растительного масла с высокой концентрацией полиненасыщенных жирных кислот и биологически активных компонентов, 60% крахмала, витамины А, В, С, Е, Р, каротиноиды, пektин, в значительных количествах макро- и микроэлементы, особенно кальций и железо. Доля триглицеридов в липидах колеблется от 77 до 83% [4—6]. Амарант содержит уникальный по составу белок со сбалансированным аминокислотным составом, основной ценностью которого являются незаменимые аминокислоты. Более половины белка составляют альбумины и глобулины. В состав жира входят олеиновая, линолевая, линolenовая жирные кислоты; в липидной фракции — до 10% углеводорода сквалена, основного предшественника тритерпенов и стероидов, в том числе стеролов и их производных, используемых для лечения атеросклероза [2, 6—9]. По результатам медицинских исследований, сквален признан важнейшем компонентом, выполняющим в организме человека роль регулятора липидного и стероидного обмена и обладающим антиоксидантными свойствами [10].

Высоchina Галина Ивановна — заведующая лабораторией фитохимии, доктор биологических наук, профессор, тел.: (383) 334-44-37, e-mail: vysochina_galina@mail.ru
Высокое содержание кальция является уникальной особенностью масла амаранта, позволяющей рассматривать его как промышленный источник получения этого углеводорода [11].

Надземная часть некоторых видов амаранта содержит до 4–6% калия и может обеспечить 1,0–1,5 т/га перевариваемого протеина, в связи с чем используется в сельском хозяйстве для кормления скота [12]. В надземной части – до 10% пектин, в зерне присутствуют нерастворимый протопектина. Эти вещества применяют в пищевой промышленности и медицине для выведения из организма тяжелых металлов и радионуклидов [13].

Содержание белка в листьях амаранта составляет 15%, причем этот белок входит в число лучших белков растительного происхождения по соотношению незаменимых аминокислот. Он содержит также вдвое больше серосодержащих аминокислот, отличается хорошей растворимостью и легко экстрагируется. В листьях амаранта обнаружено высокое содержание пектинина (63%), аскорбиновой кислоты (120 мг%), каротиноидов (9 мг%), полиценолополей (15,7%), из которых 4,21% составляют флавоноиды кварцетин, трефолин и рутина (3%), микроэлементы B, Fe, Ni, Ba [14, 15]. По другим данным, в листьях содержатся полиценолы (до 5,4%), в том числе флавоноиды (2,8%), витамины A, C, E, бетацетановые пигменты, липиды (до 10%), пектинсы (до 6), микроэлементы [2, 8, 16]. Максимальное содержание биологически активных веществ в листьях амаранта отмечено в фазе бутонизации – начала цветения растений [17]. Содержание витамина С в листьях 10 видов амаранта, используемых на зерно или получение овощной продукции, варьировало от 69 до 288 мг/100 г [18]. Добавка листьев к черному байковому чая позволяет получить качественно новые чайные продукты с повышенным содержанием флавоноидов, обладающих высокой Р-витаминной и антиоксидантной активностью [19].

В настоящее время интенсивно изучается антиоксидантная активность полиценолов [20–24], бетацетановых пигментов [25], алкалоид амарантина [26, 27], водорастворимых пектинов [28], различных экстрактов и фракций из амаранта [29].

Амарант богат веществами вторичного происхождения, которые обусловливают его лекарственные свойства. В надземной части обнаружены флавоноиды, гликозиды на основе элкинов, кверцетина, изолевистетина, 3,7,4-тригидроксифлавона афрофлорина и дардезена [30], каротиноиды (11,7–18,7 мг/100 г) [31], фенолокислоты - кофейная, n-кумаровая, феруловая, ванилиновая [32], водорастворимые пектинсы [28]. Многочисленные фармакологические исследования показали, что различные виды амаранта проявляют гепатопротекторное [33], радиопротекторное [34, 35], противовоспалительное, жаропонжающее, антигепатотоксическое [36, 37], антидиабетическое, антигипертензивное, сперматогенное [38, 39], антитриллиферативное, противогрибковое [40, 41] действие.

Большую ценность представляет масло амаранта, способное регулировать липидный обмен и уровень ненасыщенных жирных кислот в крови [42, 43], подавлять рост опухоли [44, 45], оказывать мембраностабилизирующее, противовоспалительное и анигелизирующее действие в терапевтической стоматологии [43], воздействовать положительно при атеросклерозе, заболеваниях сердца и гипертонии, гиперлипидемии [6, 45–47].

Амарантовое масло запатентовано как иммуномуслирующее средство, которое может быть использовано для коррекции иммунодефицитных состояний при лечении заболеваний разной этиологии: сердечно-сосудистых, онкологических, нарушений обмена веществ, эрозионно-язвенных поражений желудочно-кишечного тракта, псoriasis, нейродермита [48]. Изучена возможность создания новой лекарственной формы – суппозиториев с маслом амаранта для лечения воспалительных, инфекционных заболеваний кожи и слизистых оболочек, что обусловлено противовоспалительным действием, репаративным эффектом, иммуномодулирующей активностью масла [49]. В связи с высоким содержанием эфиров жирных кислот (6%) и полиценолов (6,5%), обладающих антиоксидантными свойствами, амарант рекомендован для использования в качестве антиоксиданта в молочной и хлебопекарной промышленности [50, 51], а также для приготовления полноценных продуктов питания и кормов с высоким содержанием белка, пектинса, пищевых волокон, витаминов (A, группы B, C, E), макро- и микроэлементов [52–58]. Установлено, что срок годности кисломолочных продуктов на основе амаранта может быть увеличен без применения химических антиоксидантов. Извечены антиоксидантные и пробиотические свойства кисломолочного продукта с экстрактом амаранта. Использование питательных веществ листьев амаранта в качестве нетрадиционных источников питания, в частности, при выработке кисломолочных продуктов, позволит развивать ассортимент новых видов этих продуктов, обладающих пробиотикомметаболическим эффектом [53, 54, 59].
В настоящее время во всем мире ведутся исследования по разработке эффективных технологий промышленной переработки семян амаранта. Растительный концентрат из семян амаранта может быть использован как самостоятельный продукт, а также при производстве концентрированных молочных напитков и при выработке специального молока для лиц с повышенной чувствительностью к белкам коровьего молока [60]. Вследствие наличия двух важных антиоксидантов — витамина Е и каротина — амарант усилитывает секрецию инсулина, в связи с чем его рекомендуют использовать в диете диабетических больных и для изготовления специализированных продуктов диетического питания и пищевых смесей общего назначения [61]. Из-за низкого содержания глутена амарант может быть чрезвычайно ценным и полезным продуктом для больных аллергией и целиакией [62–64].

Бетацианины амаранта рекомендуют в качестве природного красителя и стабилизатора при изготовлении крема, желе, мороженого и напитков с высоким pH [65–70]. На основе зарегистрированного в Государственном реестре овощного сорта создан салатный сорт Валентина, богатый структурообразователями и биологически активными соединениями, и получен красно-фиолетовый пищевой краситель-антиоксидант «АМФИКРА» и пищевая добавка «АМВИТА» [15].

Степень изученности видов амаранта различна. Больше внимания исследователи уделяли таким видам, как A. caudatus, A. cruentus (Syn. A. paniculatus), A. hybridus и др. A. caudatus L. — амарант хвостатый, широко распространен в горах Арктиги, Перу и Боливии, откуда его завезли в Северную Америку, Индию, Китай и другие страны. Возделяется на зерно, в связи с чем его называют «пшеницей инков» [2].

Надземная часть корня A. caudatus богаты биологически активными веществами. При исследовании сочветий, листьев, корней и стеблей были обнаружены соединения четырёх классов: углеводы, полипреноны, тритерпеноны и стероны [71]. Из метанольного экстракта листьев выделены семь тритерпенов: софининин и три новых ионол-производных гликозид [72]. В A. caudatus, A. paniculatus и A. hypochondriacus, культивируемых в Словакии, обнаружены флавоноиды (0,29–0,75% на сухой вес), каротиноиды, танины и сапонины [73]. Из цветков A. cruentus выделены два новых флавоноидов – 3,5,7-тригидрокси-6-метил-4’-метокси-дигидрофлавонол и 5,7-дигидрокси-8-метил-4’-метоксифлавон, а также известные вещества – 5,7-дигидрокси-8-метил-4’-метоксицианфлавон и кемпферид [74]. Листья могут быть источником красного пигмента амарантина, ценного пищевого красителя [26]. В листьях и надземной части растений A. caudatus были обнаружены: беток (20,4–29,3%), аскорбиновая кислота (33,0–59,0 мг%), каротин (ACB) (1,8–11,7 мг%), сахара (1,0–2,9%) [2]. Наличие биологически активных веществ в различных органах растений A. caudatus связывают с их высокой антиоксидантной активностью [20, 75, 76].

A. cruentus L. (Syn. A. paniculatus L.) — амарант багряный, метельчатый. Происходит из горных районов Мексики. Культивируется в Центральной Америке, а также в Китае, Индии, Бирме и других восточных странах. Этому виду характерны красные ярко-красные или темно-вишневые соцветия. Декоративные формы A. paniculatus (cruentus, sanguineus, nana) отличаются высотой растения, формой и окраской соцветий [2].

В надземной части растений этого вида обнаружены фенольные соединения [77], два кумарины – умбелиферон и скополеци, производные хрома пилоситигмин, три флавоноида – 6,8-ди-С-метилверцетин-3-Ме-эфир, эукалпин и гибагени [78] и четыре новых тритерпеновых гликозидов [79]. Бетацианины, содержащиеся в амарантовых соцветиях A. cruentus, могут быть использованы в качестве природного красителя при производстве желе, мороженого, напитков с высоким pH [67]. Sala et al. [7] провели исследование семян на содержание протеиновой фракции, масла и сахара в них. В связи с высоким содержанием каротиноидов, протеинов, минералов, витамина С, аминокислот лизина и метионина проведена оценка антиоксидантной, радиопротекторной и радиокислосвязывающей активности экстракта из надземной части A. paniculatus [35, 80, 81]. В листьях растений A. cruentus L. (Syn. A. paniculatus L.) были обнаружены беток (17,9–20,0%), аскорбиновая кислота (38,0–40,1 мг%), каротин (ACB) (2,4–4,5 мг%), в надземной части – сахара (1,0–2,9%) [2].

A. hybridus L. — амарант гибридный, широко распространенный в Южной Америке вид. Местное население использует его как декоративное и овощное растение. Встречается на Кавказе, в Крыму, Прибалтике. Химический состав A. hybridus, произрастающего в Африке, был детально исследован Akubugwo et al. [82], которые сделали заключение о том, что листья содержат значительные количества питательных веществ, минералов, витаминов, аминокислот, а уровень токсических веществ — низкий. Содержание вторичных метаболитов составляло (мг/100г): алкалоидов – 3,54, флавоноидов – 0,83, сапонинов – 1,68, танинов – 1,0–2,9% [2].

Amaranth (Amaranthus L.): Химический состав...
нов – 0,49, фенолов – 0,35, синильной кислоты – 16,22, фитиновой кислоты – 1,32. В зерне A. hybridus найдены кофейная, феруловая, n-кумаровая, n-гидрооксибензойная и протокатеховая кислоты [83].

A. tricolor L. (Syn. A. gangeticus L.) – амарат трехцветный, однолетник. Встречается в основном, в странах Юго-Восточной Азии, Африке, Китае, Индии. Часто используется как декоративное и пищевое растение для приготовления салатов. В районах Средней Азии произрастает как сорное. В связи с возможностью применения A. tricolor в рационе питания исследователи обращают внимание на химический состав его листьев. Отмечены высокое содержание в листьях каротина (46,5 мг/г), витамина C (151,2 мг/100 г), полифенолов, следствием чего является их значительная антиоксидантная активность и радиопротекторный эффект [22, 34, 84, 85]. Получены сорта A. tricolor, обогащенные амаратином, тирозином и фенилаланином [86].

A. spinosus L. (Syn. A. dianthus Raf.) – амарат колючий. Происходит из тропических районов Америки. Используется как овощная культура. Azhar-ul-Haq et al. [87] выделили из надземной части растений A. spinosus сапонин (7-кумарол-апигенин – 4-O-D-глюкопиранозид), а F.C. Stintzing et al. [88] – беталаны амаратин и изоамаратин (до 24 мг/100 г), гликозиды кемпферола и кверцетина и пр. Обнаруженные в надземной части флавоноиды кверцетин и рутин (0,15%) проявляют фармакологическую активность (антимикробную, противовоспалительную, антипромоцирующую, антидиабетическую, антигипертоническую, антиканцерогенную) [89, 90]. Механизм гепатопротекторной активности также связан с наличием фенольных соединений и, в частности, флавоноидов [33]. Исследованы также жаропоникновение [37], антидиабетическое, антигиперхлоридемическое и сперматогенное [39] действие экстрактов из растений A. spinosus.

A. viridis L. (Syn. A. gracilis Desf.) – амарат зеленый. Родиной его считают тропические районы Америки. Применяют как овошье. В надземной части амарацага зеленого, произрастающего в Египте, обнаружены три флавоноида – кверцетин, изокверцетин и рутин, тригидроксиан-сапонин-глюкозид, жирная кислота, стерол и гидрокарбон [36, 91]. Водный, этанольный и бутанольный экстракты показали противовоспалительный, жаропоникновующий и антигепатоксический эффекты [36], а лектин, выделенный из семян, показал значительную антипролиферативную и антифунгальную активность [40].

A. muricatus (Moquin) Gillies ex Hicken используется в традиционной медицине как диуретическое, слабительное, мочегонное средство, а также при гнойных инфекциях на коже. Из ацетонового экстракта выделены шесть агликозидов флавоноидов – кверцетин, рамнетин, изорамнетин, патулетин, рекулетин и робинетин, из метанольного экстракта – 11 гликозидов: 3-0-галактозид кверцетина, кверцетина, рутин, 3-0-галактозид и 3-0- рутинозид изорамнетина, яцен, робини, центавреин, ратулетин, 3-0-глюкозид и 3-0- рутинозид патулетина. Удалось также выделить антрахиноны хризофенол, эмодин и ренин и др. [92]. Позднее были выделены три стерола, два амминовых и два сапонина с общим генном – олеаноловой кислотой [93].

A. lividus L. (Syn. A. angustifolius L.) – амарат синеватый. Широко распространен в странах Юго-Восточной Азии, Африке, Китае, Индии как сорное, и рудеральное растение. Обнаружена антиоксидантная активность A. lividus против обоих патогенов – Aeromonas sobria и Escherichia coli. Выделено вещество с указанными свойствами, оно идентифицировано как диэтилталат [94].

Семена и масло из семян A. esculentus L. проявляли антиоксидантный и антидиабетический эффект [38].

Из листьев и стеблей A. indica Mill. выделены три эстрероида – амамстерол, эстрондерол, петеростерон, сесквитерпеновый лактон и изофлавон [95]. Мука из семян A. hypochondriacus L. может быть ценной добавкой к муке из злаковых для обогащения ее протеином, аминокислотами, жирыми кислотами, минералами и витаминами [96].

Таким образом, наличие ценных биологически активных веществ в семенах и вегетативных органах растений различных видов амараты, высокое содержание белка, пектин, сапонин, пищевых волокон, витаминов (A, группы В, C, E), макро- и микроэлементов определяет перспективность широкого использования его в производстве хлебобулочных, кондитерских и молочных продуктов, а также в качестве сырья для получения биологически активных добавок. Положительный опыт выращивания этой культуры в климатических условиях России, высокая биологическая продуктивность создают необходимость расширения области применения амараты для обогащения продуктов белком и повышения их биологической ценности.

Список литературы


44. Елисеева О.П., Камынин Д.В., Черкас А.П., Амбарова Л., Вишнярская Л.Д., Джума О.Р., Семен Х.О., Махотина О.О. Особенности влияния олип насыщения амаранта на стабильность ключевых систем почек и крови при лечении атеросклероза // Вестн. офтальмолог. 2006. № 3, с. 39–41.


51. Терешкина Л.Б., Гульшина В.А., Зеленков В.Н., Лапин А.А. Улучшение качества семян амаранта сорта ульдера (*Amaranthus hybridus*), перспективного сорта для пищевой промышленности // Житне в XXI ве: мат. 6-й респ. школы студ. и аспир. Казань, 2006. С. 158–159.


54. Щербакова С.А. Разработка технологии кисломолочного продукта с пробиотико-пребиотическим эффектом: автореф. дис. ... канд. техн. наук. М., 2005. 28 с.


Vysochina G.I. AMARANTH (AMARANTHUS L.): CHEMICAL COMPOSITION AND PROSPECTS OF USING (REVIEW)

Central siberian botanical garden Russian academy of sciences Siberian branch, Zolotodolinskaya st., 101, Novosibirsk, 630090 (Russia), e-mail: vysochina_galina@mail.ru

The review of materials on a chemical composition, biological activity, use in medicine and the food industry of representatives of genus Amaranthus L. (Amaranthaceae) of world flora is carried out. Existence in an elevated part of an amaranth of valuable biologically active substances defines prospects of its use in production of foodstuff of special and general purpose, and also as raw materials for receiving biologically active additives. At cultivation in climatic conditions of Russia high biological efficiency of an amaranth, drought resistance, nutritional value of grain and green material and other advantages are revealed.

Keywords: Amaranth (Amaranthus L.), biologically active substances, amaranth oil, scvalen, antioxidant activity.

References

5. Dergausov V.I. Masla i zhiry, 2006, no. 2, pp. 7. (in Russ.).


28. Gul'shina V.A. Biologiya razvitiia i osobennosti biokhimicheskogo sostava sortov amarantha (Amaranthus L.) v Tsentrальnopochwaemnom regione Rossii. [Developmental biology and biochemical characteristics of varieties of amaranth (Amaranthus L.) in the Central Black Earth region of Russia], Moscow, 2008, 24 p. (in Russ.).


48. Patent 2170966 (RU), 2007.01.07. (in Russ.).


