DYNAMICS OF THE FORMATION OF THE PHENOLIC REDOX SYSTEM OF CONIFEROUS PLANTS ON THE EXAMPLE OF THE COMMON PINE PINUS SYLVESTRIS

UDC 582.475, 54.061, 543.2

  • Konstantin Grigor'yevich Bogolitsyn Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University named after M.V. Lomonosova Email: k.bogolitsin@narfu.ru
  • Mariya Arkad'yevna Gusakova Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences Email: mariya_gusakova@mail.ru
  • Anna Alekseyevna Krasikova Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences Email: ann.krasikova@gmail.com
  • Sergey Sergeyevich Khviyuzov Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences Email: khviyuzov.s@yandex.ru
  • Nataliya Vladimirovna Selivanova Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences Email: snatalia-arh@yandex.ru
  • Nina Anatol'yevna Samsonova Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences Email: gavrilova.iepn@yandex.ru
  • Mariya Andreyevna Pustynnaya Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences Email: lobanova2806@gmail.com
Keywords: secondary metabolites, phenolic compounds, pigments, redox processes, enzymatic activity

Abstract

The change in the quantitative composition of secondary metabolites in the forming plant tissue is associated with climatic conditions of plant growth, including seasonality and the growing season. Acclimatization of evergreen coniferous trees in boreal regions includes regulatory processes that protect the photosynthetic apparatus of needles in specific conditions. Using the example of coniferous tree – scots pine (Pinus sylvestris), new experimental data on changes in the content of secondary metabolites of phenolic nature – participants in the processes of plant tissue biosynthesis – is presented in this paper. The dynamics of the intensity of phenolic metabolism and the quantitative change of the pigment apparatus of pine needles during the growing season were investigated using a complex of physic-chemical methods (UV spectrophotometry, HPLC, redox-metry) and the composition of the phenolic fraction of the phenol-quinone redox system of the cell wall was studied. It is shown that changes in the quantitative and qualitative composition of the phenolic compounds fraction that determine the redox state of the plant matrix occurs in plant tissue throughout the growing season. It is noted that dynamic self-regulation processes involving a complex consisting of phenolic compounds, pigments and enzymatic systems are a common pattern at all stages of plant development, ensuring that they perform protective functions of the photosynthetic apparatus of the needles of evergreen coniferous trees in boreal regions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Konstantin Grigor'yevich Bogolitsyn, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University named after M.V. Lomonosova

доктор химических наук, профессор, главный научный сотрудник лаборатории химии растительных биополимеров, заведующий кафедрой теоретической и прикладной химии

Mariya Arkad'yevna Gusakova, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences

кандидат технических наук, ведущий научный сотрудник лаборатории химии растительных биополимеров, заведующая лабораторией химии растительных биополимеров

Anna Alekseyevna Krasikova, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences

кандидат химических наук, старший научный сотрудник лаборатории химии растительных биополимеров

Sergey Sergeyevich Khviyuzov, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences

кандидат химических наук, старший научный сотрудник лаборатории химии растительных биополимеров

Nataliya Vladimirovna Selivanova, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences

кандидат химических наук, старший научный сотрудник лаборатории химии растительных биополимеров

Nina Anatol'yevna Samsonova, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences

младший научный сотрудник лаборатории химии растительных биополимеров

Mariya Andreyevna Pustynnaya, Federal Research Center for Integrated Study of the Arctic named after. Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences

младший научный сотрудник лаборатории химии растительных биополимеров

References

Fang X., Yang C-Q., Wei Y-K., Ma Q.X., Yang L., Chen X.-Y. Plant Diversity and Resources, 2011, vol. 33, pp. 53–64. DOI: 10.3724/SP.J.1143.2011.10233.

Ramakrishna A., Ravishankar G.A. Plant Signaling and Behavior, 2011, vol. 6, pp. 1720–1731. DOI: 10.4161/psb.6.11.17613.

Achakzai K.K.A., Achakzai P., Masood A., Kayani S.A., Tareen R.B. Pakistan Journal of Botany, 2009, vol. 41, pp. 2129–2135.

Zaprometov M.N. Fenol'nyye soyedineniya: rasprostraneniye, metabolizm i funktsii v rasteniyakh. [Phenolic com-pounds: distribution, metabolism and functions in plants]. Moscow, 1993, 272 p. (in Russ.).

De Meester B., Vanholme R., Mota T., Boerjan W. Plant Communications, 2022, vol. 3, article 100465. DOI: 10.1016/j.xplc.2022.100465.

Gusakova M.A., Bogolitsyn K.G., Krasikova A.A., Selivanova N.V., Khviyuzov S.S. Khimiya rastitel'nogo syr'ya, 2022, no. 1, pp. 213–223. DOI: 10.14258/jcprm.2022019685.

Kumar A., Singhal K.C., Sharma R.A., Vyas G.K., Kumar V. Asian Journal of Experimental Biological Sciences, 2013, vol. 4, pp. 155–158.

Darwish R.S., Hammoda H.M., Ghareeb D.A., Abdelhamid A.S.A., Harraz F.M., Shawky E. RSC Advances, 2021, vol. 11, pp. 24624–24635. DOI: 10.1039/d1ra01681d.

Plaksina I.V. Khimiya rastitel'nogo syr'ya, 2009, no. 1, pp. 103–105. (in Russ.).

Gallet C., Pellissier F. Journal of Chemical Ecology, 1997, vol. 23, pp. 2401–2412.

Muscolo A., Sidari M. Plant and Soil, 2006, vol. 284, pp. 305–318.

Ladanova N.V., Plyusnina S.N. Lesnoy zhurnal, 1998, no. 1, pp. 7–11. (in Russ.).

Nikolayeva T.N., Lapshin P.V., Zagoskina N.V. Khimiya rastitel'nogo syr'ya, 2021, no. 2, pp. 291–299. DOI: 10.14258/jcprm.2021028250. (in Russ.).

Bogolitsyn K.G., Surso M.V., Gusakova M.A., Zubov I.N. IVUZ. Lesnoy zhurnal, 2013, no. 6, pp. 91–96. (in Russ.).

Shlyk A.A. Biokhimicheskiye metody v fiziologii rasteniy. [Biochemical methods in plant physiology]. Moscow, 1971, pp. 154–170. (in Russ.).

Katerova Z., Todorova D., Sergiev I. Medicinal Plants and Environmental Challenges. Cham, Springer, 2017, pp. 97–121. DOI: 10.1007/978-3-319-68717-9_6.

Bag P., Chukhutsina V., Zhang Z., Paul S., Ivanov A.G., Shutova T., Croce R., Holzwarth A.R., Jansson S. Nature Communications, 2020, vol. 11, article 6388. DOI: 10.1038/s41467-020-20137-9.

Gusakova M.A., Bogolitsyn K.G., Krasikova A.A., Selivanova N.V., Khviyuzov S.S., Samsonova N.A. Lesnoy zhur-nal, 2022, no. 1, pp. 36–46. DOI: 10.37482/0536-1036-2022-1-36-48. (in Russ.).

Tuzhilkina V.V. Sibirskiy lesnoy zhurnal, 2017, no. 1, pp. 65–73. (in Russ.).

Shavnin S.A., Yusupov I.A., Marina N.V., Montile A.A., Golikov D.Yu. Fiziologiya rasteniy, 2021, vol. 68, no. 2, pp. 1–11. DOI: 10.31857/S0015330321020184. (in Russ.).

Öguist G., Huner N.P.A. Annual Review of Plant Biology, 2003, vol. 54, pp. 329–355. DOI: 10.1146/annurev.arplant.54.072402.115741.

Sofronova V.E., Dymova O.V., Golovko T.K., Chepalov V.A., Petrov K.A. Russian Journal of Plant Physiology, 2016, vol. 63, pp. 433–442. DOI: 10.1134/S1021443716040142.

Gricar J., Cufar K., Eler K., Gryc V., Vavrčík H., De Luis M., Prislan P. Forests, 2021, vol. 12, article 331. DOI: 10.3390/f12030331.

Cartenì F., Deslauriers A., Rossi S., Morin H., De Micco V., Mazzoleni S., Giannino F. Frontiers in Plant Science, 2018, vol. 9, article 1053. DOI: 10.3389/fpls.2018.01053.

Published
2023-12-15
How to Cite
1. Bogolitsyn K. G., Gusakova M. A., Krasikova A. A., Khviyuzov S. S., Selivanova N. V., Samsonova N. A., Pustynnaya M. A. DYNAMICS OF THE FORMATION OF THE PHENOLIC REDOX SYSTEM OF CONIFEROUS PLANTS ON THE EXAMPLE OF THE COMMON PINE PINUS SYLVESTRIS // chemistry of plant raw material, 2023. № 4. P. 231-240. URL: http://journal.asu.ru/cw/article/view/12679.
Section
Low-molecular weight compounds