Влияние рН почвы на характеристики фитолитов эпидермы листьев Dactylis glomerata L. в условиях юга Западной Сибири УДК 581.522.5

Основное содержание статьи

М. Ю. Соломонова Email: m_solomonova@list.ru
А. Д. Лященко Email: aleny-lea@mail.ru
Т. А. Жембровская Email: zhembrovskaya@mail.ru


Представленное исследование посвящено оценки влияния рН почвы на морфометрические характеристики фитолитов (размер и форму) в коротких клетках эпидермы листьев. Изучены листья Dactylis glomerata из четырех местообитаний, которые отличаются между собой геоботанически и реакцией среды почвы. Выявлено влияние рН среды на следующие параметры фитолитов: длина, площадь, периметр, вытянутость и степень выраженности лопастей. Растения, произрастающие в более кислых почвенных условия обладают более крупными и вытянутыми фитолитами с более выраженными лопастями. Эта зависимость наблюдается как в тенистых, так и в открытых местообитаниях.

Copy Translate

Детали статьи

Как цитировать
Соломонова М. Ю., Лященко А. Д., Жембровская Т. А. Влияние рН почвы на характеристики фитолитов эпидермы листьев Dactylis glomerata L. в условиях юга Западной Сибири // Флора и растительность Алтая, 2023. Т. 150. С. 5-11. URL: http://journal.asu.ru/flora/article/view/14343.
Биографии авторов

М. Ю. Соломонова, Алтайский государственный университет


Copy Translate

А. Д. Лященко, Алтайский государственный университет


Copy Translate

Т. А. Жембровская, Алтайский государственный университет


Copy Translate


Albert R. M., Shahack-Gross R., Cabanes D., Gilboa A., Lev-Yadun S., Portillo M., Sharon I., Boaretto E., Weiner S. 2008. Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): mode of formation and
archaeological significance. Journal of Archaeological Science 35(1): 57–75. DOI:1016/j.jas.2007.02.015
Attolini D., Pattelli L., Nocentini S., Wiersma D. S., Tani C., Papini A., Mariotti Lippi M. 2023. Developmental analysis and optical modelling of short cell phytoliths in Festuca exaltata (Poaceae). Flora: 301. DOI: 10.1016/
Ball T. B., Brotherson J. D. 1992. The effect of varying environmental conditions on phytolith morphometries
in two species of grass (Bouteloua curtipendula and Panicum virginatum). Scanning Microscopy 6(4): 1163–1181. Ball T. B., Davis A., Evett R. R., Ladwig J. L., Tromp M., Out W. A., Portillo M. 2016. Morphometric analysis of phytoliths: recommendations towards standardization from the International Committee for Phytolith Morphometrics.
Journal of Archaeological Science 68: 106–111. DOI: 10.1016/j.jas.2015.03.023
Ball T. B., Gardner J. S., Bortherson J. D. 1996. Identifying phytoliths produced by the inflorescence bracts of
three species of wheat (Triticum monococcum L., T. dicoccum Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. Journal of Archaeological Sciences 23: 619–632. DOI: 10.1006/jasc.1996.0058
Ball T. B., Gardner J. S., Nicole A. 1999. Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccum, T. dicoccoides and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). American Journal of Botany 86(11): 1615–1623. DOI: 10.2307/2656798
Ball T., Vrydaghs L., Mercer T., Pearce M., Snyder S., Lisztes-Szabo Z., Petх A. 2017. A morphometric study of variance in articulated dendritic phytolith wave lobes within selected species of Triticeae and Aveneae. Vegetation History and Archaeobotany 26: 85–97. DOI: 10.1007/s00334-015-0551-x
Blackman E. 1969. Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Canadian Journal of Botany 47: 827–838. DOI: 10.1139/b69-120.
Blinnikov M., Busacca A., Whitlock C. 2001. A new 100,000-year phytolith record from the Columbia Basin, Washington, U.S.A. In: J. D. Meunier, F. Colin (eds.) Phytoliths: Applications in Earth Sciences and Human History. Lisse: Swets end Zeitlinger. Pp. 27–55.
Bobrov A. A., Bobrova E. K., Alexeev Ju. E. 2001. Biogenic silica in biosystematics – potential uses. In: J. D. Meunier, F. Colin (eds.) Phytoliths: Applications in Earth Sciences and Human History. Lisse: Swets end Zeitlinger. Pp. 279-288.
Druzhinina O., Napreenko M., Napreenko-Dorokhova T., Golyeva A., Bashirova L. 2023. Water level fluctuations in the middle and late holocene in the Curonian Lagoon, Southeastern Baltic: results of the macrofossil and phytolith analyses. Hydrology 10(11). DOI: 10.3390/hydrology10010011
Dunn R. E., Le T-Y. T., Strцmberg C. A. E. 2015. Light environment and epidermal cell morphology in grasses. International Journal of Plant Sciences 176(9): 832–847. DOI: 10.1086/683278
Fernandez Honaine M., Borrelli N., Osterrieth M., del Rio L. 2017. Leaf and culm silicification of Pampas grass (Cortaderia selloana) developed on different soils from Pampean region, Argentina. Australian Journal of
Botany 65(1) 1–10. DOI: 10.1071/BT16154
Fernandez Honaine M., Benvenuto M. L., Borrelli N. L., Osterrieth M. 2016. Early silicification of leaves and
roots of seedlings of a panicoid grass grown under different conditions: anatomical relation and structural role. Plant Biology 18(6):1025–1030. DOI: 10.1111/plb.12488
Fernandez Honaine M., Osterrieth M. 2012. Silicification of the adaxial epidermis of leaves of a panicoid grass in relation to leaf position and section and environmental conditions. Plant Biology 14 (4): 596–604. DOI: 10.1111/ j.1438-8677.2011.00530.x
Gentili R., Ambrosini R., Montagnani C., Caronni S., Citterio S. 2018. Effect of Soil pH on the Growth, Reproductive Investment and Pollen Allergenicity of Ambrosia artemisiifolia L. Front. Plant Sci. 9:1335. DOI: 10.3389/ fpls.2018.01335
Golyeva A. A. 2001. Phytoliths and their informational role in the study of natural and archaeological objects. Moscow; Syktyvkar: Elista, Poltex. 140 pp. [In Russian] (>;L520• •. •. $8B>;8BK• 8• 8E• 8=D>@<0F8>==0O• @>;L• 2• 87CG5=88• ?@8@>4=KE• 8• 0@E5>;>38G5A:8E• >1J5:B>2•. •.; !K:BK2:0@•: -;8AB0•, >;B5:A•, 2001. 140 A•.).
Hoљkovб K., Neustupa J., Pokornэ P., Pokornб A. 2021. Phylogenetic, ecological and intraindividual variability patterns in grass phytolith shape. Annals of Botany XX: 1–11. DOI: 10.1093/aob/mcab143
Issaharou-Matchi I., Barboni D., Meunier J.-D., Saadou M., Dussouillez P., Contoux C., Zirihi-Guede N.
Intraspecific biogenic silica variations in the grass species Pennisetum pedicellatum along an evapotranspiration gradient in South Niger. Flora 220: 84–93. DOI:10.1016/j.flora.2016.02.008
Khamari A., Mohapatra H. S., Padhan S., Patel S., Sahu B., Rana H. K., Mishra A. K. 2021. Effect of pH stress on transpiration of plants using a new instrument: AM Transpirator. JETIR 8(6): 601-608.
Lisztes-Szabo Z., Kovacs S., Petх A. 2014. Phytolith analysis of Poa pratensis (Poaceae) leaves. Turkish Journal of Botany 38(5): 851–863. DOI: 10.3906/bot-1311-8
Liu L., Jie D., Liu H., Gao Z., Gao G., Li N., Guo J., Qiaoet Z. 2016. An orthogonal experimental study of phytolith size of Phragmites communis in northeast China. Boreas 45(1): 122–132. DOI: 10.1111/bor.12139
Lu H., Liu K.-b. 2003. Morphological variations of lobate phytoliths from grasses in China and the south- eastern United States. Diversity and Distribution 9(1): 73-–87. DOI: 10.1046/j.1472-4642.2003.00166.x
Out W. A., Madella M. 2016. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeological and Anthropological Sciences 8(3): 505–521. DOI:10.1007/s12520-015-0235- 6
Patrick Jr. W. H., Yusuf A., Jugsujinda A. 1987. Effects of soil pH and Eh on growth and nutrient uptake by rice in a flooded oxisol of Sitiung area of Sumatra, Indonesia. Technical Report 2: 1 – 25.
Rovner I. 1971. Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research 1(3) 343–359. DOI: 10.1016/0033-5894(71)90070-6
Rudall P. J., Prychid C., Gregory T. 2014. Epidermal patterning and silica phytoliths in Grasses: An evolutionary history. The Botanical Review 80(1): 59–71. DOI: 10.1007/s12229-014-9133-3
Ryabogina N. E., Yuzhanina E. D., Ivanov S. N., Golyeva A. A. 2021. Microbiomarkers of the natural environment and interior design of Neolithic and Eneolithic dwellings (Settlement Mergen 6 and 7). Bulletin of Archeology, Anthropology and Ethnography 4(55): 5–16. [In Russian] (Рябогина Н. Е., Южанина Э. Д., Иванов С. Н., Гольева А. А. Микробиомаркеры природного окружения и внутреннего обустройства жилищ неолита и энеолита (Поселение Мергень 6 и 7) // Вестник археологии, антропологии и этнографии, 2021. No 4(55). С. 5–16).
Solomonova M. Y., Speranskaya N. Y., Blinnikov M. S., Zhembrovskaya T.A., Silantyeva M. M. 2022. Separation of wavy and polylobate forms of phytoliths of the “crenate” morphotype in Pooideae Benth. species of the south of
Western Siberia on the basis of phylogenetic data. Turczaninowia 25(4): 122–135. DOI: 10.14258/turczaninowia.25.4.13 Solomonova M. Y., Zhembrovskaya T. A., Lyashchenko A. D., Kotov S. D., Speranskaya N. Y. 2023. Environmental impact on phytolith morphometric parameters by example crenate morphotype of Dactylis glomerata L. leaves (South
of Western Siberia, Russia). Acta Biologica Sibirica 9: 953–973. DOI: 10.5281/zenodo.10101537
Sun X., Liu Q., Tang T., Chen X., Luo X. 2019. Silicon fertilizer application promotes phytolith accumulation in
rice plants. Frontiers in Plant Science 10. DOI: 10.3389/fpls.2019.00425
Twiss P. C., Suess E., Smith R. 1969. Morphological classification of grass phytoliths. Soil Science Society of
America Proceedings 33, 1: 109–117. DOI: 10.2136/sssaj1969.03615995003300010030x
Verdin P., Berger J.-F., Lopez-Saez J.-A. 2001. Contribution of phytolith analysis to the understanding of
historical agrosystems in the Rhфne mid-valley (Southern France). In: J. D. Meunier, F. Colin (eds.) Phytoliths: Applications in Earth Sciences and Human History. Lisse: Swets end Zeitlinger. Pp. 155–171
Wang C., Lu H., Zhan J., Mao L., Ge Y. 2019. Bulliform phytolith size of rice and its correlation with hydrothermal environment: a preliminary morphological study on species in Southern China. Frontiers in Plant Science 10. DOI:
Wang J., Liu L., Ball T., Yu. L., Li Y., Xing F. 2016. Revealing a 5,000-y-old beer recipe in China. PNAS 113(23): 6444–6448. DOI: 10.1073/pnas.1601465113
Wang J., Liu L., Gao Z., Jie D. 2018. Effects of available soil silicon on the formation of phytoliths in Phragmites australis (Cav.) Trin. ex Streud, Poaceae. Botany Letters 166(1): 51–63. DOI: 10.1080/23818107.2018.1544505
Wilkinson S., Corlett J. E., Oger L., Davies W. J. 1998. Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. Plant Physiol. 117 (2): 703–709.
Yost C., Blinnikov M. 2011. Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for arcaheobotany and paleoecological reconstructions. Journal of Archaeological Science 38(8): 1977–1991. DOI: 10.1016/j.jas.2011.04.016
Zhang J., Lu H., Sun G., Flad R., Wu N., Huan X., He K., Wang Y. 2016. Phytoliths reveal the earliest fine reedy textile in China at the Tianluoshan site. Scientific Reports 6(1): 1–7. DOI: 10.1038/srep18664
Zhijun Z., Pearsall D. M., Benfer R., Piperno D. R. 1998. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: Finalized method. Economic Botany 52(2): 134–145. DOI: 10.1007/