Пример точного решения одной задачи о росте опухоли

Э.И. Леонова, А.А. Папин

АлтГУ, г. Барнаул

Постановка задачи

В работе рассматривается простое решение задачи миграции клеток опухоли (доброкачественной или злокачественной) [1], [2]. Предполагается, что опухоль состоит из трех типов клеток: делящихся (с плотностью р), покоящихся (с плотностью q) и мертвых (с плотностью n). Эти клетки физически идентичны по объему и массе, сумма плотностей постоянна:

$$p + q + n = \theta = const. \tag{1}$$

В дальнейшем $\theta = 1$. Уравнения сохранения массы с учетом фазовых переходов имеют вид [3]:

$$\frac{\partial \mathbf{p}}{\partial t} + div(\mathbf{p}v) = \left[K_B(\mathbf{c}) - K_Q(\mathbf{c}) - K_A(\mathbf{c}) \right] \mathbf{p} + K_P(\mathbf{c}) \mathbf{q},$$

$$\frac{\partial \mathbf{q}}{\partial t} + div(\mathbf{q}v) = K_Q(\mathbf{c}) \mathbf{p} - \left[K_P(\mathbf{c}) + K_D(\mathbf{c}) \right] \mathbf{q},$$

$$\frac{\partial \mathbf{n}}{\partial t} + div(\mathbf{n}v) = K_A(\mathbf{c}) \mathbf{p} + K_D(\mathbf{c}) \mathbf{q} - K_R \mathbf{n}.$$
(2)

Скорость определяется из закона Дарси $v = -\nabla \sigma$, где σ – давление жидкости (клетки представляются, как поток жидкости).

Система (2) дополняется уравнением диффузии для питательных веществ с:

$$\epsilon_0 \frac{\partial c}{\partial t} = \Delta c - \lambda (p + q).$$
 (3)

В уравнениях (2), (3) используются следующие обозначения:

 $K_{P}(c)$ – скорость становления покоящихся клеток делящимися;

 $K_D(c)$ – скорость становления покоящихся клеток мертвыми;

 $K_Q(c)$ – скорость становления делящихся клеток покоящимися;

 $K_{A}(c)$ – скорость становления делящихся клеток мертвыми;

 $K_{B}(c)$ – скорость роста делящихся клеток;

 K_{R} – скорость выведения мертвых клеток макрофагами;

 $\epsilon_0 = const; \lambda = const.$

Однородное решение

Рассматривается простой случай при $K_i = const.$

Пусть $\mathbf{p} = \mathbf{p}(t)$, $\mathbf{q} = \mathbf{q}(t)$, $\mathbf{n} = \mathbf{n}(t)$, $\mathbf{c} = \mathbf{c}(t)$, $\mathbf{v} = \mathbf{v}(t)$, $\mathbf{\sigma} = \mathbf{\sigma}(t)$, $K_i = const$, $\lambda = const$, $\epsilon_0 = const$. Начальные условия имеют вид: $\mathbf{p}(0) = \mathbf{p}_0$, $\mathbf{q}(0) = \mathbf{q}_0$, $\mathbf{n}(0) = \mathbf{n}_0$, $\mathbf{c}(0) = \mathbf{c}_0$.

Система (2) и (3) является линейной относительно p, q, n [4].

Если сложить все уравнения (2), то получим: $0 = K_B p - K_R n$. Выразим n из (1) и подставим в это равенство. Получим: $(K_B + K_R)p + K_R q = K_R$. Рассмотрим два случая:

1)
$$K_B + K_R = 0$$
 , тогда $K_R q = K_R$, т. е. $q = 1$ и $p + n = 0$. Поэтому $p = 0$ и $n = 0$.

2)
$$K_B+K_R\neq 0$$
, тогда $p=\frac{K_R}{K_B+K_R}-\frac{K_R}{K_B+K_R}q$, т. е. $n=1-p-q=1-q-\frac{K_R}{K_B+K_R}+\frac{K_R}{K_B+K_R}q=1-\frac{K_R}{K_B+K_R}-\left(1-\frac{K_R}{K_B+K_R}\right)q$.

Остается уравнение для q:

$$\frac{dq}{dt} = -\left(\frac{K_Q K_R}{K_B + K_R} + (K_P + K_D)\right) q + \frac{K_Q K_R}{K_B + K_R}.$$

Его решение имеет вид:

$$q(t) = \frac{K_Q K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)} \cdot \left(1 - e^{-\left(\frac{K_Q K_R}{K_B + K_R} + (K_P + K_D)\right)t}\right) + \frac{(K_Q K_R + (K_P + K_D))^2}{(K_Q K_R + (K_P + K_D))^2} + \frac{(K_Q K_R + (K_P + K_D))^2}{(K_Q K_R + (K_Q + K_D))^2} + \frac{(K_Q K_R + (K_Q + K_D))^2}{(K_Q K_Q + (K_Q + K_D))^2} + \frac{(K_Q K_R + (K_Q + K_Q + K_Q$$

$$+q_0e^{-\left(\frac{K_QK_R}{K_B+K_R}+(K_P+K_D)\right)t}$$
.

Положим:
$$a_1 = \frac{\kappa_Q \kappa_R}{\kappa_Q \kappa_R + (\kappa_P + \kappa_D)(\kappa_B + \kappa_R)}$$
, $a_2 = \frac{\kappa_Q \kappa_R}{\kappa_B + \kappa_R} + (\kappa_P + \kappa_D)$.

Тогда
$$q(t) = a_1 + e^{-a_2 t} (q_0 - a_1).$$

Необходимо, чтобы выполнялся физический принцип максимума, т. е. 0 < q < 1, t > 0.

Для выполнения условия q>0 достаточно потребовать, чтобы

$$a_1 > 0$$
, $a_2 > 0$, $q_0 > 0$, $q_0 > a_1$.

Для выполнения условия q<1 достаточно потребовать, чтобы $a_2>0, \ a_1<1, \ q_0<1.$

В общем случае получим следующие ограничения на данные задачи: $a_2 > 0$, $0 < a_1 < 1$, $0 < q_0 < 1$, $q_0 > a_1$.

С учетом представления для q(t), уравнение для функции с принимает следующий вид

$$\begin{split} \frac{\partial \mathbf{c}}{\partial t} &= -\frac{\lambda}{\epsilon_0} \left\{ \frac{K_R}{K_B + K_R} + \left(1 - \frac{K_R}{K_B + K_R} \right) \left[\frac{K_Q K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)} + \right. \right. \\ &\left. + \left(q_0 - \frac{K_Q K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)} \right) \cdot e^{-\left(\frac{K_Q K_R}{K_B + K_R} + (K_P + K_D) \right) t} \right] \right\}. \end{split}$$

Следовательно

$$\begin{split} \mathbf{c}(t) &= -\frac{\lambda}{\epsilon_0} \bigg\{ \frac{K_R}{K_B + K_R} t + \bigg(\frac{K_B}{K_B + K_R} \bigg) \bigg[\frac{K_Q K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)} t + \\ & + \bigg(\frac{K_Q K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)} - q_0 \bigg) \cdot \\ & \cdot \bigg(\frac{K_B + K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)} e^{-\bigg(\frac{K_Q K_R}{K_B + K_R} + (K_P + K_D) \bigg) t} + \\ & + \frac{K_B}{K_Q K_R + (K_P + K_D)(K_R + K_R)} + -\frac{\epsilon_0}{\lambda} c_0 \bigg) \bigg] \bigg\}. \end{split}$$

Положим

Положим:
$$a_3 = \frac{K_R}{K_B + K_R}, \quad a_4 = \frac{K_B}{K_B + K_R}, \quad a_2 = \frac{K_Q K_R}{K_B + K_R} + (K_P + K_D),$$

$$a_1 = \frac{K_Q K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)}, \quad a_2^{-1} = \frac{K_B + K_R}{K_Q K_R + (K_P + K_D)(K_B + K_R)},$$

$$a_5 = \frac{K_B}{K_Q K_R + (K_P + K_D)(K_B + K_R)}.$$

Тогда

$$c(t) = -\frac{\lambda}{\epsilon_0} \Big\{ (a_3 + a_1 a_4)t + a_4 \left[-(q_0 - a_1) \cdot (a_2^{-1} e^{-a_2 t} - a_5) \right] - \frac{\epsilon_0}{\lambda} c_0 \Big\}.$$

Необходимо, чтобы выполнялся физический принцип максимума, т. e. 0 < c < 1, t > 0.

Для выполнения условия с > 0 достаточно потребовать, чтобы $\lambda = 1$, $\epsilon_0 = -1$, $a_3 < 0$, $a_4 > 0$, $0 < a_1 < 1$, (HO $q_0 > a_1$), $a_2 > 0$, $a_5 > 0$, $c_0 > 0$.

Для выполнения условия с < 1 достаточно потребовать, чтобы $0 < a_1 < 1$, $0 < q_0 < 1$, $q_0 > a_1$, $\lambda = 1$, $a_2 > 0$, $a_5 = 1/a_2$, $a_1a_4 = -a_3$, $a_3 < 0$, $a_4 > 0$, $c_0 < 1$.

Рассмотрим случай монотонного роста функции c(t). Поскольку $q_0 - a_1 > 0$ и $dc/dt = a_4(q_0 - a_1)e^{-a_2t}$, то условие $a_4 > 0$ является достаточным для монотонности c(t).

Кроме того, $\lim_{t \to \infty} \mathsf{c}(t) = a_4(q_0 - a_1)a_5 + c_0$. Поэтому должно быть выполнено условие $0 < a_4(q_0 - a_1)a_5 + c_0 < 1$.

В общем случае получим следующие ограничения на данные задачи: $\lambda = 1$, $\epsilon_0 = -1$, $0 < a_1 < 1$, $0 < q_0 < 1$, $q_0 > a_1$, $a_2 > 0$, $0 < a_5 < 1, a_5 = 1/a_2, \ a_1a_4 = -a_3, a_3 < 0, a_4 > 0, 0 < c_0 < 1.$

Работа выполнена в рамках государственного задания Министерства науки и высшего образования $P\Phi$ по теме «Современные методы гидродинамики для задач природопользования, индустриальных систем и полярной механики» (номер темы: FZMW-2020-0008).

Библиографический список

- 1. Friedman A. Cancer as Multifaceted Disease // Math. Model. Nat. Phenom., 2012 7 1, p. 3–28.
- 2. Pettet G.J., Please C.P., Tindall M.J., S. McElwain D.L. The migration of cells in multicell tumor spheroids // Bull. Math. Biol., 2001 63, p. 231–257.
- 3. Овсянников Л.В. Введение в механику сплошных сред (учебное пособие для студентов НГУ) часть 1 // Новосибирск: НГУ, 1977, С. 70.
- 4. Карташев А.П., Рождественский Б.Л. Обыкновенные дифференциальные уравнения и основы вариационного исчисления // Москва: "Наука". Главная редакция физико-математической литературы, 1979, С. 288.

УДК 519.63

Численная реализация модели двухфазной неравновесной фильтрации

Д.А. Омариева¹, Д.Р. Байгереев², М.Н. Мадияров²

¹Восточно-Казахстанский государственный технический университет им. Д. Серикбаева,

г. Усть-Каменогорск, Казахстан;

²Восточно-Казахстанский государственный университет им. С. Аманжолова, г. Усть-Каменогорск, Казахстан

Динамика протекания фильтрационных течений многофазной жидкости нелинейным образом зависит как от структурно-механических свойств жидкости, так и свойств окружающего скелета. Исследование процесса течения многофазной жидкости в пористой среде наиболее полно проведено в предположении о локальном фазовом равновесии. Однако в реальных пластовых условиях существенное влияние на процесс фильтрации имеет свойство запаздывания насыщенности фазы, изучение которого привело к возникновению теории неравновесной фильтрации. Необходимость учета данного явления при разработке нефтяных месторождений обсуждается во многих работах [1, 2].

В настоящей работе рассматривается модель двухфазной неравновесной фильтрации с обобщенным законом неравновесности вида

$$\tau(x)\frac{\partial s}{\partial t} - \tau(x)\nu(x)\frac{\partial \eta}{\partial t} = \eta - s,\tag{1}$$