$$n \le 2$$
, либо $n \ge 3$ и $p(1) = 1$, $p'(1) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

Тогда R — коммутативное кольцо.

Следствие 2. Пусть ассоциативное кольцо R удовлетворяет одному из тождеств:

$$p([x,y]) = [p(x),y] + [x,p(y)],$$
 где $p(t) = t - t^2 + t^3, t + t^2 - t^3.$

Тогда R — коммутативное кольцо.

Библиографический список

- 1. Мальцев Ю.Н., Журавлев Е.В. Лекции по теории ассоциативных колец. Барнаул: АлтГПА. 2014. 422 с.
- 2. Дурандина Е.В., Мальцев Ю.Н. О коммутативности колец, удовлетворяющих некоторым коммутаторным тождествам // Известия Алтайского государственного университета. Барнаул, 2002. $N \ge 1$ (23). С. 18—21.

УДК 512.552.4

Об особенностях строения 2-порожденной нильпотентной алгебры R над полем с ограничениями на $\dim R^3 \ / R^4$

Е.П. Петров

АлтГУ, г. Барнаул

В 80-е годы в Днестровской тетради [1] Л.А. Бокутем была предложена задача (№ 1.23) об описании тождеств, выполняющихся во всех n-мерных ассоциативных алгебрах над полем (n – фиксированное число). С.А. Пихтильковым в работе [2] эта задача была решена для алгебр с единицей при n < 18. Ю.Н. Мальцевым в статье [3] изучалось алгебр M_n , порожденное всеми многообразие нильпотентными алгебрами (такие многообразия там были описаны для $n \le 6$). И.Л. Гусевой в статье [4] было доказано, что n-мерная нильпотентная алгебра удовлетворяет стандартному тождеству степени $k = \left\lceil \frac{\mathrm{n}}{\mathrm{3}} \right\rceil + 2$. В 1991 г. автором в работе [5] была сформулирована гипотеза о том, что произвольная n-мерная нильпотентная алгебра удовлетворяет стандартному тождеству степени $k = [\frac{1+\sqrt{1+8n}}{2}]$, и в качестве подтверждения этой гипотезы был приведен пример n-мерной алгебры, удовлетворяющей стандартному тождеству указанной

степени, но не удовлетворяющей никакому полилинейному тождеству меньшей степени, и доказано, что n-мерная нильпотентная алгебра R с условием $\dim \mathbb{R}^2/R^3 \leq 2$ удовлетворяет данной гипотезе. В целях дальнейшего подтверждения обозначенной гипотезы автором в работах [6]–[9] проведены исследования нильпотентной конечномерной алгебры R, удовлетворяющей для некоторого натурального числа N>1 условию: $\dim \mathbb{R}^N/\mathbb{R}^{N+1}=2$, с описанием ее строения, определяющих соотношений и тождеств. В частности, доказано, что такая алгебра удовлетворяет стандартному тождеству степени N+2.

Из полученных автором результатов ясно, что степень стандартного тождества в алгебре R с условием dim R^N / $R^{N+1}=2$, N>1, не зависит от величины индекса нильпотентности алгебры R. В случае, когда dim R^2 / $R^3=3$, такой независимости уже нет. В [10] автором замечено, что для любого натурального числа k найдется конечномерная нильпотентная алгебра R над произвольным полем с условием dim R^2 / $R^3=3$, не удовлетворяющая никакому полилинейному тождеству степени k.

Заметим, что нильпотентная конечномерная алгебра R с условием $\dim R^N / R^{N+1} = 2$ является в некотором смысле опорной для дальнейшего изучения произвольных нильпотентных конечномерных алгебр, для которых $\dim R^N / R^{N+1} > 2$. При этом для нахождения тождеств, которым удовлетворяют такие алгебры, описание их строения и изучение их определяющих соотношений является весьма важным.

В [10] автором отмечалось, что для конечномерной нильпотентной алгебры R над алгебраически замкнутым полем, которая удовлетворяет условию dim $\mathbb{R}^2/\mathbb{R}^3=3$ и в которой выполняется одно единственное определяющее соотношение, для любого натурального k>2 имеет место одно из следующих равенств: dim $\mathbb{R}^k/\mathbb{R}^{k+1}=k+1$ или dim $\mathbb{R}^k/\mathbb{R}^{k+1}=F_{k+2}$, где F_n – числа Фибоначчи.

Имеют место также следующие результаты.

Предложение 1. В нильпотентной 2-порожденной алгебре R над алгебраически замкнутым полем с условием

$$\dim R^2 / R^3 = \dim R^3 / R^4 = 3$$

для любого k > 3 имеют место ограничения dim $R^k / R^{k+1} \le 4$.

Предложение 2. В нильпотентной 2-порожденной алгебре R над алгебраически замкнутым полем со следующими условиями:

$$\dim R^2 / R^3 = \dim R^3 / R^4 = 3$$
, $\dim R^4 / R^5 \ge 3$,

при подходящем выборе порождающих базис R^3/\mathbb{R}^4 с точностью до антиизоморфизма имеет один из следующих видов: $\{a^3,a^2b,aba\}$, $\{a^3,a^2b,ab^2\}$, $\{a^3,a^2b,ba^2\}$, $\{a^3,a^2b,ba^3\}$.

Предложение 3. В нильпотентной 2-порожденной алгебре R над алгебраически замкнутым полем со следующими условиями:

$$\dim R^2 / R^3 = \dim R^3 / R^4 = 3$$
, $\dim R^4 / R^5 \ge 3$,

у которой базис R^3/R^4 может быть представлен только в виде $\{a^3, a^2b, ba^2\}$, выполняются соотношения: $b^2 \equiv 0 \pmod{R^3}$, aba $\equiv 0 \pmod{R^4}$, bab $\equiv 0 \pmod{R^4}$.

Остается пока открытым вопрос: какому минимальному тождеству может удовлетворять нильпотентная 2-порожденная алгебра R над полем c условием $\dim R^2 / R^3 = \dim R^3 / R^4 = 3$.

Библиографический список

- 1. Днестровская тетрадь: нерешенные проблемы теории колец и модулей: (оперативно-информационный материал). Новосибирск, Инт математики СО АН СССР, 1982.
- 2. Пихтильков С.А. О многообразиях, порожденных п-мерными алгебрами. Тульский политехнический институт, Тула (1980), Деп. в ВИНИТИ, № 1213-80.
- 3. Мальцев Ю.Н. О тождествах нильпотентных алгебр // Известия вузов, Мат. -1986. -№ 9. С. 68-72.
- 4. Гусева И.Л. О тождествах конечномерных нильпотентных алгебр // Международная конференция по алгебре памяти А.И. Мальцева: сборник трудов, Новосибирск, август 1989. С. 43.
- 5. Петров Е.П. О тождествах конечномерных нильпотентных алгебр // Алгебра и логика. 1991.-T. 30, вып. 5.-C. 540-556.
- 6. Петров Е.П. Определяющие соотношения и тождества нильпотентной конечномерной алгебры R с условием dim $R^2/R^3=2$ // Сибирские электронные математические известия. -2016. -№ 13. C. 1052-1066.
- 7. Петров Е.П. Строение, определяющие соотношения и тождества конечномерной нильпотентной алгебры R с условием dim R^N / R^{N+1} = 2 // Сибирские электронные математические известия. − 2017. − № 14. − C. 1153-1187.
- 8. Петров Е.П. Определяющие соотношения и тождества конечнопорожденной нильпотентной алгебры R с условием dim \mathbb{R}^N / $\mathbb{R}^{N+1} = 2$ // Сибирские электронные математические известия. − 2018. − № 15. − С. 1048-1064.

- 9. Петров Е.П. О стандартном тождестве в конечнопорожденной нильпотентной алгебре R над произвольным полем с условием $\dim \mathbb{R}^N / R^{N+1} = 2$ // Сибирские электронные математические известия. 2019. № 16. С. 1981-2002.
- 10. Петров Е.П. О строении, определяющих соотношениях и тождествах в 2-порожденной нильпотентной алгебре R с условием $\dim \mathbb{R}^2 / \mathbb{R}^3 = 3$ // Межд. конференция «Мальцевские чтения», 19–23 августа 2019 г., тезисы докладов, Новосибирск. С. 169-170.

ПОДСЕКЦИЯ ГЕОМЕТРИЯ И ПРИКЛАДНОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ

УДК 514.765

Исследование конформно киллинговых векторных полей на пятимерных 2-симметрических лоренцевых многообразиях

Т.А. Андреева 1 , Д.Н. Оскорбин 1 , Е.Д. Родионов 1 АлтГУ, г. Барнаул

Статья посвящена исследованию конформно киллинговых векторных полей на пятимерных 2-симметрических лоренцевых многообразиях. Конформно киллинговы поля играют важную роль в теории солитонов Риччи, а также порождают важный класс локально конформно однородных (псевдо)римановых многообразий. В римановом случае В.В. Славским и Е.Д. Родионовым было доказано, что такие пространства являются либо конформно плоскими, либо конформно эквивалентны локально однородным римановым многообразиям. В псевдоримановом случае вопрос их строения остается открытым.

Ключевые слова: конформно киллинговы векторные поля, лоренцевы многообразия, *k-симметрические пространства*.

Псевдориманово многообразие (M,g) называется симметрическим порядка k, если $\nabla^k R=0,$ $\nabla^{k-1} R\neq 0,$ где $k\geq 1$ и R — тензор кривизны (M,g)

Симметрические лоренцевы многообразия порядков 2 и 3 изучены в работах Галаева, Алексеевского [1], Сеновиллы [2].

Векторное поле K на (псевдо)римановом многообразии (M, g) называется конформно киллинговым векторным полем, если