Об одной задаче преобразования плоскости

Плотникова Е.А., Саженкова Е.В.

Новосибирский государственный университет, г. Новосибирск Новосибирский государственный университет экономики и управления, г. Новосибирск pselena@qmail.com, sazhenkovs@yandex.ru

Аннотация

В работе проводится обсуждение полного решения одной задачи преобразования плоскости, относящейся как к математическому анализу, так и к аналитической геометрии. Приведено подробное решение задачи, базирующегося на достаточно простых топологических понятиях, при этом демонстрирующее досконально чёткое исследование вопроса.

Ключевые слова: отображение плоскости, выпуклое множество, образ отрезка, внутренние и граничные точки.

В процессе обучения студентов математическом дисциплинам важным аспектом является их подготовка к последующей успешной возможности заниматься самостоятельной научно-исследовательской работой, в воспитании математической культуры, обеспечивающей в дальнейшем квалифицированный выход на исследование нерешённых математических проблем.

Особая роль в решении этих задач принадлежит внимательному и кропотливому сочетанию геометрической (можно сказать – топологической) иллюстрации и аналитических рассуждений. Такой доскональный подход к изучению поставленных перед исследователем вопросов в большой степени позволяет воспитывать в учащихся ответственное отношение к выводам своего научного исследования [1–3].

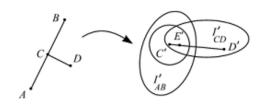
В качестве примера такой работы, остановимся на подробном решении следующей задачи.

Пусть взаимно однозначное отображение плоскости в себя переводит отрезки в выпуклые множества. Требуется доказать, что это отображение прямые переводит в прямые.

Будем обозначать A' – образ точки A при рассматриваемом отображении; l_{AB} и $l_{A'B'}$ – прямые, проходящие через точки A и B, A' и B' соответственно; I_{AB} и $I_{A'B'}$ – отрезки с концами в точках A и B, A' и B' соответственно; l'_{AB} и l'_{AB} образы l_{AB} и l_{AB} ; α' – образ всей плоскости при заданном отображении.

Из условия задачи и определения выпуклого множества непосредственно следует, что образ выпуклого множества есть выпуклое множество. В частности, $I_{A'B'} \subset I'_{AB}$, I'_{AB} , I'_{AB} и α' – выпуклые множества.

Лемма 1. I'_{AB} как множество плоскости не имеет внутренних точек.

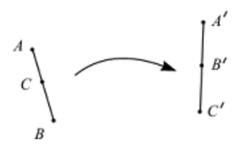


Доказательство. Пусть для некоторой точки C её образ C' является внутренней точкой множества I'_{AB} , то есть круг ненулевого радиуса с центром в точке C' содержится в I'_{AB} . Выберем точку $D \notin l_{AB}$. В силу взаимной однозначности отображения имеет место $D' \notin I'_{AB}$. Поскольку $I_{C'D'} \subset I'_{CD}$, найдётся точка E' внутри круга, отличная от центра круга, принадлежащая $I_{C'D'}$. Это означает, что точка E, отличная от C лежит на обоих отрезках AB и CD.

Лемма 2. $I'_{AB} \subset l_{A'B'}$.

Доказательство. В противном случае I'_{AB} имеет внутреннюю точку. \square

Лемма 3. $I'_{AB} = I_{A'B'}$



Доказательство. Допустим, точка C при отображении из отрезка I_{AB} попала вне отрезка $I_{A'B'}$. Можно считать, что точка B' лежит между точками A' и C'. Тогда $B \notin I_{AC}$, следовательно $B' \notin I'_{AC}$. Противоречие.

Лемма 4. $l'_{AB} = l_{A'B'} \cap \alpha'$.

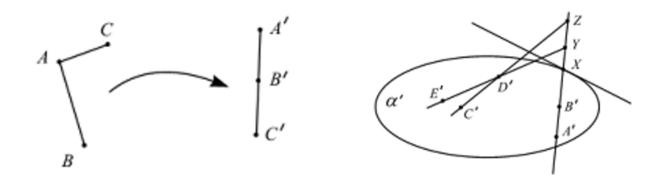


Доказательство. Очевидно, что $l'_{AB} \subset \alpha'$. Включение $l'_{AB} \subset l_{A'B'}$ доказывается аналогично доказательству леммы 3. Итак, $l'_{AB} \subset l_{A'B'} \cap \alpha'$. Пусть теперь $C' \in l_{A'B'} \cap \alpha'$. Если точка C' лежит на отрезке $I_{A'B'}$, то по лемме 3 она лежит на отрезке I'_{AB} и, значит, на прямой l'_{AB} . Пусть точка C' лежит вне отрезка $I_{A'B'}$, Без ограничения общности можно считать, что точка B' лежит между точками A' и C'. Предположим, что точка C не лежит на прямой l_{AB} . Тогда отрезок I_{AC} имеет единственную общую точку с отрезком I_{AB} . Следовательно, отрезки $I_{A'C'}$ и $I_{A'B'}$ тоже должны иметь единственную общую точку. Противоречие.

Лемма 5. Множество α' является выпуклым непустым открытым множеством на плоскости.

Доказательство. Очевидно, что α' непустое множество, оно выпуклое как образ выпуклого множества. Осталось заметить, что оно открытое множество, то есть для любой точки $X' \in \alpha'$ найдётся круг ненулевого радиуса с центром в точке X' содержащийся в α' .

Построим отрезки I_{AB} и I_{CD} , так что эти отрезки пересекаются в точке X, являющейся внутренней точкой для обоих отрезков. Тогда отрезки $I_{A'B'}$ и $I_{C'D'}$ пересекаются в точке X', являющейся внутренней точкой для обоих отрезков. Поскольку α' выпуклое



множество и четырёхугольник с вершинами в точках A', B', C' и D' является невырожденным найдётся круг ненулевого радиуса с центром в точке X' содержащийся в этом четырёхугольнике и, одновременно, в α' .

Завершаем решение поставленной задачи.

Рассмотрим образ произвольной прямой l'_{AB} . Поскольку $l'_{AB} = l_{A'B'} \cap \alpha'$ (лемма 4), её образом будет прямая, если $l_{A'B'}$ целиком содержится во множестве α' . Если не вся прямая $l_{A'B'}$ содержится во множестве α' , то это прямая пересекает границу выпуклого множества α' в некоторой её точке X. Через точку X проведём опорную прямую к множеству α' . Выберем точку D' в α' и через неё проведем две прямых, пересекающих прямую $l_{A'B'}$ в точках Y и Z, лежащих в другой полуплоскости опорной прямой чем α' . Поскольку l'_{AB} и l'_{CD} не имеют общих точек, прямые l_{AB} и l_{CD} - параллельны. Точно также параллельными прямыми являются прямые l_{AB} и l_{ED} , кроме того, прямые l_{CD} и l_{ED} различные. Получили противоречие с пятым постулатом Евклида.

Список литературы

- 1. Плотникова Е.А., Саженков А.Н., Саженкова Т.В. Геометрический факультатив-практикум в научно-исследовательской работе старшеклассников и студентов младших курсов // Труды семинара по геометрии и математическому моделированию. 2017. № 3. С. 34–37.
- 2. Плотникова Е.А., Саженкова Е.В. Об элементах математического моделирования в курсах высшей математики // Труды семинара по геометрии и математическому моделированию. 2019. N_2 5. С. 141–143.
- 3. Плотникова Е.А., Саженков А.Н. О топологических задачах на прямой // Сборник трудов всероссийской конференции по математике с международным участием МАК-2022. Барнаул: Изд-во Алт. ун-та, 2022. С. 141–143.