Вычисление собственных частот колебаний упругой балки¹

Валяев К.Е., Сибирякова Т.А., Найденова К.Е.

Алтайский государственный университет, г. Барнаул kirill.valyaev1999@gmail.ru, sibiriakova.tatiana@mail.ru, kristina-akulova00@mail.ru

Аннотация

В работе исследуется колебания упругой балки с переменной толщиной, находящейся в полном контакте с жидкостью (гидроупругие колебания) или при отсутствии жидкости (упругие колебания). Гидроупругие и упругие прогибы балки являются двумерными. Задача рассматривается без демпфирования колебаний и внешнего воздействия. Упругая балка тонкая, конечной длины, и с заданными краевыми условиями. Вычислены моды упругих и гидроупругих колебаний балки в случае линейной и кусочно-линейной толщины.

Ключевые слова: прогибы балки, периодические колебания, собственные частоты балки, собственные моды балки.

1. Постановка задачи для балки с постоянной толщиной

Рассматривается упругая балка переменной толщины h'(x'), помещенная на поверхность невязкой и несжимаемой жидкости бесконечной глубины. Штрих здесь обозначает размерные переменные. Длина балки 2L намного больше толщины балки h'. В состоянии покоя свободная поверхность жидкости плоская и горизонтальная. Балка плавает на поверхности жидкости, причем ее осадка меньше толщины балки. Течение и прогиб балки w'(x',t') описываются в декартовой системе координат Ox'y'. Линия y' = 0 соответствует положению равновесия свободной поверхности жидкости. Центр системы координат находится в центре балки. Положение балки аппроксимируется в главном приближении интервалом y' = 0, -L < x' < L. Края балки свободны от изгибных моментов, $M'(\pm L, t') = 0$, и перерезывающих сил, $V'(\pm L, t') = 0$, где

$$M'(x',t') = D'x'\frac{\partial^2 w'}{\partial x'^2},$$

$$V'(x',t') = \frac{\partial M'}{\partial x'}, \quad D'(x') = \frac{Eh'^3(x')}{12(1-\nu^2)}$$
(1)

изгибный момент, перерезывающая сила и коэффициент жесткости вдоль балки соответственно, E – модуль Юнга и ν – коэффициент Пуассона материала балки. Прогиб балки, w'(x',t'), описывается уравнением балки Эйлера [1],

$$m'(x')\frac{\partial^2 w'}{\partial t'^2} + \frac{\partial^2}{\partial x'^2} \left(D'(x')\frac{\partial^2 w'}{\partial x'^2} \right) = p'(x',0,t') \quad (-L < x' < L,)$$
⁽²⁾

¹Работа выполнена при финансовой поддержке РНФ (грант № 23-71-01096).

с краевыми условиями,

$$D'(x')\frac{\partial^2 w'}{\partial x'^2} = 0, \quad \frac{\partial^2}{\partial x'^2} \left(D'(x')\frac{\partial^2 w'}{\partial x'^2} \right) = 0 \quad (x' = \pm L,)$$
(3)

где $m'(x') = \rho_p h'(x')$ – масса балки на единицу площади, ρ_p – плотность материала балки, а p'(x', 0, t') – гидродинамическое давление, действующее на смачиваемую поверхность балки. В рамках линейной теории гидроупругости гидродинамическое давление задается линеаризованным уравнением Бернулли, $p'(x', y', t') = -\rho \partial \varphi' / \partial t$, где ρ – плотность жидкости, а $\varphi'(x', y', t')$ – потенциал скорости, который является решением следующей краевой задачи

$$\nabla^{2} \varphi' = 0 \quad (y' = 0),$$

$$\varphi'(x', 0, t') = 0 \quad (y' = 0, |x'| > L),$$

$$\frac{\partial \varphi'}{\partial y'}(x', 0, t') = \frac{\partial w'}{\partial t'}(x', t') \quad (y' = 0, |x'| < L),$$

$$\varphi' \to 0 \quad \left(x'^{2} + y'^{2} \to \infty\right).$$
(4)

В данной формулировке начальные условия не требуются. Мы определим периодические во времени решения связанной задачи (1)–(4)

$$\omega'(x',t') = W'(x')\cos(\omega t'), \varphi(x',y',t') = -\Phi'(x',y')\sin(\omega t'),$$
(5)

и соответствующие частоты ω . В данной постановке отсутствуют внешние силы. Ненулевые вещественные решения такой спектральной задачи называются мокрые моды балки.

Задача решается в безразмерных переменных x' = Lx, y' = Ly, $t' = \frac{t}{\omega}$, $W' = W_{sc}W(x)$, $\Phi' = \omega w_{sc}L\Phi(x,y)$. Кроме того, $h'(x') = h_c h(x)$, где h_c – средняя толщина балки,

$$h_c = \frac{1}{2L} \int_{-L}^{L} h'(x') \, dx', \quad \int_{-1}^{1} h(x) \, dx = 2.$$
(6)

Связная задача (1)-(5) в безразмерных переменных имеет вид

$$\frac{d^2}{dx^2} \left(h^3(x) \frac{d^2 W}{dx^2} \right) = \Omega[\alpha h(x) W + \Phi(x, 0)] \quad (x < 1),$$

$$\frac{d^2 W}{dx^2} = \frac{d^3 W}{dx^3} = 0 \quad (x = \pm 1),$$
(7)

$$\nabla^2 \Phi = 0 \quad (y < 0),$$

$$\Phi = 0 \quad (y = 0, |x| > 1), \ \Phi_y = W(x) \quad (y = 0, |x| < 1),$$
(8)

где $\alpha = (\rho_p h_c) / (\rho L)$, $\Omega = \rho L^5 \omega^2 / D_c$ и $D_c = E h_c^3 / [12 (1 - \nu^2)]$. Существуют два «статических» ненулевых решения задачи на собственные значения (7)-(8), $W_1(x) = C_1$ и $W_2(x) = C_2 x$, где C_1 и C_2 – любые константы, соответствующие собственным значениям $\Omega_1 = \Omega_2 = 0$. Другие решения $W_k(x)$ соответствуют $\Omega_k > 0$. Решения $W_k(x)$ называются мокрыми жесткими (k = 1, 2) и упругими (k > 3) модами плавающей балки в безразмерных переменных. Эти моды не нормированы и не ортогональны в стандартном смысле. Размерные частоты мокрых упругих мод определяются формулой $\omega_k = [\Omega_k D_c / (\rho L^5)]^{\frac{1}{2}}$. Ненулевыми решениями краевой задачи (5) с $\Phi(x, 0) = 0$ являются сухие моды $\psi_n(x)$. Сухие моды являются решениями спектральной задачи

$$\frac{d^2}{dx^2} \left(h^3(x) \frac{d^2 \psi_n}{dx^2} \right) = \lambda_n^4 h(x) \psi \ (x < 1), \ \frac{d^2 \psi_n}{dx^2} = \frac{d^3 \psi_n}{dx^3} = 0 \ (x = \pm 1), \tag{9}$$

где λ_n – спектральный параметр, n > 1. Сухие моды $\psi_n(x)$ ортогональны и нормированы с весом, где в качестве весовой функции выступает толщина балки

$$\int_{-1}^{1} h(x)\psi_n(x)\psi_m(x) \, dx = \delta_{nm},\tag{10}$$

где $\delta_{nn} = 1$ и $\delta_{nm} = 0$ для $n \neq m$. Существуют две моды, $\psi_1(x) = 1/\sqrt{2}$ и $\psi_2(x) = a(x-c)$, которые удовлетворяют (9), ортонормальны и соответствуют $\lambda_1 = \lambda_2 = 0$, они являются жесткими модами сухой свободной балки с коэффициентами

$$c = \frac{1}{2} \int_{-1}^{1} xh(x) \, dx, \quad a = \left(\int_{-1}^{1} x^2 h(x) \, dx - 2c^2 \right)^{-\frac{1}{2}}.$$
 (11)

Сухие безразмерные упругие моды, $\psi_n(x)$, n > 3, и соответствующие собственные значения λ_n зависят от толщины балки h(x).

Задача (9) может быть решена аналитически для балки с линейной толщиной, см. рисунок 1.

Рисунок 1. Упругая балка с линейной толщиной в безразмерных переменных

2. Сухие моды упругой балки с линейной толщиной

Общее решение дифференциального уравнения (9) с $h(x) = 1 + \beta x$, $|\beta| < 1$, определяется через функции Бесселя [2,3],

$$\psi_n(x) = \frac{1}{\xi} M_n(\xi), \ \xi = \frac{2}{\beta} \lambda_n \sqrt{1 + \beta x},$$

$$M_n(\xi) = A_n J_1(\xi) + B_n Y_1(\xi) + C_n I_1(\xi) + D_n K_1(\xi),$$
(12)

где $J_1(\xi)$ и $Y_1(\xi)$ – функции Бесселя первого и второго порядка соответственно, а $I_1(\xi)$ и $K_1(\xi)$ – модифицированные функции Бесселя первого и второго порядка соответственно. Краевые условия свободного края в (9) записываются в терминах функции $M_n(\xi)$ как

$$\xi \frac{d^3 M_n}{d\xi^3} = \frac{d^2 M_n}{d\xi^2}, \ \frac{1}{3} \xi \frac{d^2 M_n}{d\xi^2} + \frac{1}{\xi} M_n = \frac{d M_n}{d\xi} \quad \left(\xi_n^{\pm}\right),$$

где $\xi_n^{\pm} = 2\lambda_n \sqrt{1 \pm \beta}/\beta$. Для коэффициентов A_n, B_n, C_n, D_n получаются следующие четыре уравнения из краевых условий

$$A_{n}\left\{\left(\frac{8}{\xi^{2}}-3\right)J_{1}\left(\xi\right)+\left(\xi-\frac{4}{\xi}\right)J_{0}\left(\xi\right)\right\}+B_{n}\left\{\left(\frac{8}{\xi^{2}}-3\right)Y_{1}\left(\xi\right)+\left(\xi-\frac{4}{\xi}\right)Y_{0}\left(\xi\right)\right\}+\\+C_{n}\left\{\left(\frac{8}{\xi^{2}}+3\right)I_{1}(\xi)+\left(\xi+\frac{4}{\xi}\right)I_{0}(\xi)\right\}+\\+D_{n}\left\{\left(\frac{8}{\xi^{2}}+3\right)K_{1}\left(\xi\right)+\left(\xi+\frac{4}{\xi}\right)K_{0}\left(\xi\right)\right\}=0,$$

$$A_{n}\left\{\left(2-\frac{\xi^{2}}{4}\right)J_{1}\left(\xi\right)-\xi J_{0}\left(\xi\right)\right\}+B_{n}\left\{\left(2-\frac{\xi^{2}}{4}\right)Y_{1}\left(\xi\right)-\xi Y_{0}\left(\xi\right)\right\}+\\+C_{n}\left\{\left(2+\frac{\xi^{2}}{4}\right)I_{1}\left(\xi\right)-\xi I_{0}\left(\xi\right)\right\}+D_{n}\left\{\left(2-\frac{\xi^{2}}{4}\right)K_{1}\left(\xi\right)-\xi K_{0}\left(\xi\right)\right\}=0,$$
(13)

где $\xi = \xi_n^{\pm}$. Ненулевые решения однородной системы (13) существуют только в том случае, если определитель системы равен нулю, что дает дисперсионное уравнение относительно λ_n как функции параметра β , описывающего тангенс угла наклона толщиы балки в безразмерных переменных. Решение системы (13) определено до постоянного множителя, который получается с помощью условия нормировки (10). Такие интегралы могут быть вычислены аналитически [4].

Уравнения (11) дают параметры второй жесткой сухой моды $\psi_2(x)$ для линейной толщины балки, $c = \beta/3$ и $a = 3/\sqrt{2(3-\beta^2)}$. Ожидается, что $\lambda_n(\beta) \to \overline{\lambda}_n$ и $\psi_n(x) \to \overline{\psi}_n(x)$, $n \ge 3$, при $\beta \to 0$, где $\overline{\psi}_n(x)$ – решения следующей спектральной задачи для упругой балки постоянной толщины с соответствующими собственными значениями $\overline{\lambda}_n$

$$\frac{d^4\psi_n}{dx^4} = \lambda_n^4\psi_n \ \left(|x| < 1\right), \quad \frac{d^2\psi_n}{dx^2} = \frac{d^3\psi_n}{dx^3} = 0 \ \left(x = \pm 1\right).$$

Сухие моды $\psi_n(x)$ для n = 3, 4, 5, 6 и $\beta = 0, 0.25, 0.5, 0.75, 1.0$ показаны на рисунке 2. Можно видеть сходимость упругих мод к $\overline{\psi}_n(x)$ при $\beta \to 0$.

Рисунок 2. Сухие упругие моды, n = 3, 4, 5, 6 для значений $\beta = 0, 0.25, 0.5, 0.75, 0.95$

Отношения частот сухих мод балки с линейной толщиной, $\omega_n^{(d)}(\beta)$, и балки с постоянной средней толщиной h_c , $\overline{\omega}_n^{(d)}$, которые равны $\lambda_n^2(\beta)/\overline{\lambda}_n^2$, как функции параметра β ,

Рисунок 3. Отношения частот сухих мод для балки с линейной толщиной и для балки с постоянной средней толщиной как функции параметра β

показаны на рисунке 3 для $3 \le n \le 7$. Видно, что частоты всех мод, кроме n = 3, ниже частот балки с постоянной средней толщиной.

Для упрощения расчетов балки с линейной толщиной, сухие моды с переменной толщиной $\psi_n(x)$ представляются как суперпозиция сухих мод с постоянной толщиной

$$\psi_n(x) = \sum_{k=1}^{k_{\text{max}}} C_{nk} \overline{\psi}_k(x).$$
(14)

Коэффициенты C_{nk} рассчитываются численно по формуле

$$C_{nk} = \int_{-1}^{1} \psi_n(x) \overline{\psi}_k(x) \, dx, \qquad (15)$$

где использовалось условие ортогональности (10). Приближенные значения $\psi_n(x)$ для n = 3 и n = 4 с различным числом мод $\overline{\psi}_k(x)$ показаны на рисунке 4 (а) и (б) соответственно. На рисунке 4 (в) и (г) показана максимальная разница,

$$\max_{-1 \le x \le 1} \left| \psi_n(x) - \sum_{k=1}^{k_{\max}} C_{nk} \overline{\psi}_k(x) \right|,\tag{16}$$

в зависимости от k_{max} , где k_{max} – число членов, сохраняемых в ряду (14). Видно, что аппроксимация упругих мод балки с линейной толщиной (14) с $k_{\text{max}} = 40$ является точной даже для больших значений параметра β . Необходимое число k_{max} слагаемых в (14) увеличивается с ростом номера моды n.

3. Мокрые моды упругих балок с линейной толщиной

Мокрые жесткие моды, $W_1(x) = 1/\sqrt{2}$ и $W_2(x) = a(x-c)$, где $c = \beta/3$ и $a = 3/\sqrt{2(3-\beta^2)}$, и их частоты, $\omega_1 = \omega_2 = 0$, такие же, как и для сухой балки с той же толщиной. Мокрые упругие моды $W_k(x)$, k > 3, ищутся как суперпозиция

$$W_k(x) = \sum_{n=1}^{\infty} W_{kn} \psi_n(x), \qquad (17)$$

с коэффициентами W_{kn} и собственными значениями Ω_k , которые необходимо определить. Подставляя ряд (17) в уравнение балки (7), используя дифференциальное уравнение (9) для сухих мод, умножая обе стороны полученного уравнения на $\psi_m(x)$, и интегрируя по

Рисунок 4. Аппроксимации сухих мод $\psi_n(x)$ балки с линейной толщиной для n = 3 (a) и n = 4 (б) сухими модами $\overline{\psi}_k(x)$ балки со средней постоянной толщиной. Погрешность (16) аппроксимации (14) для различных значений параметра β

x от -1 до 1, используя соотношение ортогональности (10), получаем бесконечную систему алгебраических уравнений для коэффициентов W_{kn} в ряду (17),

$$[D - \Omega_k \left(\alpha I + S\right)] W_k = 0. \tag{18}$$

Здесь $W_k = (W_{k1}, W_{k2}, W_{k3}, ...)^T$ – вектор коэффициентов в ряду (17), D – диагональная матрица, $D_{nm} = 0$ для $n \neq m$, $D_{nn} = \lambda_n^4$, где λ_n – спектральные значения из (9), I – единичная матрица, $I_{nm} = \delta_{nm}$.

Упругая k-я мокрая мода, k > 3, задается рядом (17), где коэффициенты W_{kn} являются решениями алгебраической системы (15). Значение Ω_k является решением уравнения

$$det \left[D - \Omega_k \left(\alpha I + S \right) \right] = 0. \tag{19}$$

Это решение зависит от единственного параметра α , описывающего отношение масс балки и жидкости. Решения вещественны, поскольку матрица системы (18) симметрична. Система (18) решается для каждого корня Ω_k .

Решения уравнения (18) для $3 \le k \le 12$ приведены в таблице 1 для $\alpha = 0.01$ и $\beta = 0.5$. Обратите внимание, что мы задаем $W_{kk} = 1$ для каждого $k \ge 3$, удаляем k-е уравнение, переносим k-й столбец в правую часть и решаем полученные неоднородные уравнения с коэффициентами W_{kn} , где $1 \le n \le k - 1$ и $k + 1 \le n \le k_{\text{max}}$. Коэффициенты показаны с тремя значащими цифрами. Видно, что мокрые моды имеют примерно те же формы, что и соответствующие сухие моды для балки с линейной толщиной.

Таблица 1

Коэффициенты W_{kn} k-й мокрой моды $\psi_k(x)$ как суперпозиция сухих мод $\overline{\psi}_n(x)$.

n/k	3	4	5	6	7	8	9	10	11	12
3	1	-0.042	-0.098	-0.004	0.032	0.001	0.015	0.000	-0.008	0.000
4	0.048	1	0.052	0.064	-0.008	-0.021	-0.003	0.009	0.002	0.005
5	0.099	-0.061	1	0.077	-0.149	-0.007	-0.065	0.002	0.035	0.001
6	-0.005	-0.060	-0.095	1	-0.085	-0.081	-0.013	0.032	0.005	0.017
7	-0.019	-0.003	0.152	0.106	1	0.110	0.164	-0.009	-0.079	-0.002
8	0.002	0.016	-0.011	0.073	-0.142	1	0.117	-0.088	-0.016	0.038
9	-0.006	-0.002	0.045	-0.004	-0.170	-0.148	1	-0.143	-0.171	-0.011

10	-0.001	-0.006	0.004	-0.027	-0.014	0.072	0.186	1	0.149	0.092
11	0.002	0.001	-0.018	0.003	0.061	-0.004	0.173	-0.189	1	0.177
12	0.000	-0.003	0.002	-0.012	-0.007	0.033	-0.016	-0.067	-0.230	1

Основной вклад в k-ую мокрую моду исходит от k-ой сухой моды, следующей модой, которая дает наибольший вклад, является (k + 1)-ая мода, но ее вклад составляет менее 15% для $3 \le k \le 8$ и менее 23% для $9 \le k \le 12$.

4. Сухие и мокрые моды упругой балки с кусочно-линейной толщиной

Для поиска мод балки с произвольной толщиной h(x) она может быть аппроксимирована кусочно-линейными функциями. Пусть длина балки разбита на N_p интервалов, $a_j < x < a_{j+1}, 1 \le j \le N_p, a_1 = -1$ и $a_{N_p+1} = 1$ в безразмерных переменных. Толщина балки аппроксимируется по формуле

$$h(x) \approx h_j + T_j (x - a_j), \quad T_j = \frac{h_{j+1} - h_j}{a_{j+1} - a_j} (a_j < x < a_{j+1}),$$
 (20)

где $h_j = h(a_j)$ и $h_j > 0$. Для каждого интервала $a_j < x < a_{j+1}$ общее решение дифференциального уравнения (9) можно получить, используя решение (12), которое справедливо для $h(x) = 1 + \beta x$, с четырьмя неопределенными коэффициентами. Эти коэффициенты определяются с помощью четырех краевых условий при $x = \pm 1$ и четырех краевых условий между интервалами. Условия между интервалами такие, чтобы функция $\psi_n(x)$ была непрерывна вместе со своими первой и второй производными на концах интервалов, и также непрерывной перерезывающей силой (1), что дает

$$\left[\frac{d^2\psi}{dx^2}\right] = \left[\frac{d\psi}{dx}\right] = \left[\psi\right] = 0, \quad h\left[\frac{d^3\psi}{dx^3}\right] + 3\frac{d^2\psi}{dx^2}\left[\frac{dh}{dx}\right] = 0 \ (x = a_j),\tag{21}$$

 $2 \leq j \leq N_p$. Действительно, для интервала $a_j < x < a_{j+1}$ и $T_j \neq 0$ уравнение (9) с использованием (20) имеет вид

$$\frac{d^2}{dx^2} \left([h_j + K_j(x - a_j)]^3 \frac{d^2 \psi_n^{(j)}}{dx^2} \right) = \lambda_n^4 [h_j + K_j(x - a_j)] \psi_n^{(j)}, \tag{22}$$

где $\psi_n^{(j)}(x)$ – функция $\psi_n(x)$ на рассматриваемом интервале. Мы ограничимся случаем, когда $h_j - T_j a_j \neq 0$. Тогда уравнение (22) может быть записано как

$$\frac{d^2}{dx^2}\left((1+\beta_j x)^3 \frac{d^2 \psi_n^{(j)}}{dx^2}\right) = \tilde{\lambda}_{nj}(1+\beta_j x)\psi_n^{(j)},\tag{23}$$

где $\beta_j = \frac{T_j}{h_j - T_j a_j}$ и $\tilde{\lambda}_{nj} = \frac{\lambda_n}{|h_j - T_j a_j|^{\frac{1}{2}}}.$

Общее решение дифференциального уравнения (23) дается формулой (12)

$$\psi_n^{(j)}(x) = \frac{1}{\xi} M_{nj}(\xi), \ M_{nj}(\xi) = A_{nj} J_1(\xi) + B_{nj} Y_1(\xi) + C_{nj} I_1(\xi) + D_{nj} K_1(\xi),$$
(24)

$$\xi = b_{nj}\sqrt{1+\beta_j x}, \ b_{nj} = \frac{2\lambda_n}{T_j}|h_j - T_j a_j|^{\frac{1}{2}} sgn\left(h_j - T_j a_j\right),$$
(25)

где sgn(x) – знаковая функция, x = |x| sgn(x). Необходимо определить $4N_p$ коэффициентов A_{nj} , B_{nj} , C_{nj} , D_{nj} , $4(N_p - 1)$ условий согласования (21) и четыре краевых условия, как в (9). Поэтому для коэффициентов A_{nj} , B_{nj} , C_{nj} и D_{nj} мы имеем $4N_p$ линейных уравнений с нулевыми правыми сторонами. Эта система имеет ненулевые решения только для λ_n , которые являются корнями определителя системы. Далее система решается численно для каждого λ_n до постоянного множителя, который определяется с помощью условия нормировки (10).

Рассмотрим один простой случай. Линейная кусочная аппроксимация дает три интервала с разной формой льда: левый и правый интервалы, где толщина льда является линейной функцией, и средний интервал, где толщина льда постоянна. Для описания аппроксимации этой формы нам необходимо определить границы отрезков L_{ℓ} и L_r , а также наклоны α'_l и α'_r . Средняя толщина балки равна h_c . Затем вычисляются средние толщины на каждом сегменте и определяются как h_l , h_m и h_r соответственно. Тогда балка имеет толщину h(x), заданную в безразмерных переменных в виде

$$h(x) = \begin{cases} h_l [1 - \alpha'_l (x - L_\ell)], & (-1 < x \le L_\ell) \\ h_m, & (L_\ell \le x \le L_r) \\ h_r [1 + \alpha'_r (x - L_r)], & (L_r \le x < 1). \end{cases}$$
(26)

Схема толщины показа на рисунке 5.

Рисунок 5. Форма балки с переменной толщиной (а). Соответствующая кусочно-линейная аппроксимация (б)

Решение спектральной задачи для сухих удобно искать отдельно на каждом из интервалов $-1 < x \le L_{\ell}, L_{\ell} \le x \le L_r, L_r \le x < 1$

$$\psi_n(x) = \begin{cases} \psi_n^{(l)}(x), & (-1 < x \le L_\ell) \\ \psi_n^{(m)}(x), & (L_\ell \le x \le L_r) \\ \psi_n^{(r)}(x), & (L_r \le x < 1). \end{cases}$$
(27)

и затем срастить соответствующие решения на границах $x = L_{\ell}$ и $x = L_{r}$.

Упругие моды нумеруются с номера n = 3. Для вычисления упругих мод, необходимо найти нетривиальные решения уравнения (22). На среднем участке, где толщина льда не меняется, спектральные функции ψ_n являются решениями спектральной задачи, описывающей колебания упругой балки постоянной толщины.

$$\psi_{n,xxxx}^{(m)} = (\theta_n^4 / h_i^2) \psi_n^{(m)}(x) \quad (L_l \le y \le L_r).$$
(28)

Решением этой спектральной задачи будут стандартные моды колебаний упругой балки с постоянной толщиной.

Для случая линейно меняющейся толщины льда (левый и правый интервалы) функции ψ_n являются решениями спектральной задачи, описывающей колебания упругой балки с линейно меняющейся толщиной

$$h_i^2(x)\psi_{n,xxxx}^{(l)} + 6h_i(x)h_{i,x}\psi_{n,xxx}^{(l)} + 6(h_{i,x})^2\psi_{n,xx}^{(l)} = \theta_n^4\psi_n^{(l)}, \quad (-1 < x < L_l),$$
(29)

$$h_i^2(x)\psi_{n,xxxx}^{(r)} + 6h_i(x)h_{i,x}\psi_{n,xxx}^{(r)} + 6(h_{i,x})^2\psi_{n,xx}^{(r)} = \theta_n^4\psi_n^{(r)}, \quad (L_r < x < 1).$$
(30)

Наиболее важными параметрами являются α'_l и α'_r , которые описывают углы наклона линейного изменения толщины льда на данном участке. Для размерных переменных эти углы малы. Однако в безразмерных переменных условия $\alpha_{l,r} << 1$ не всегда выполняются. Решение последней спектральной задачи имеет вид (26). Краевые условия дают 12 алгебраических уравнений. Последнее необходимое уравнение – это условие ортогональности мод $\psi_n(x)$ с весом, где весовая функция – это кусочно-линейная аппроксимация толщины балки.

Расчеты сухих проводились для двух наборов параметров, см. таблицу 2. Первый (I) набор близок к балке постоянной толщины. Во втором наборе (II) средняя толщина балки на срединном интервале примерно в 4 раза меньше общей средней толщины, а средние толщины льда в левом и правом интервалах соответственно больше в 3 и 1,4 раза.

Таблица 2

Номер	$L_l \mid L_r \mid \alpha_l' \mid$		α'_r h_l		h_m	h_r	
случая							
Ι	-0.8	0.2	$3.36 \cdot 10^{-4}$	$8.4 \cdot 10^{-5}$	$\approx 1.014h_c$	$\approx 0.98 h_c$	$\approx 1.014h_c$
II	-0.8	0.2	0.03	0.0033	$\approx 2.85 h_c$	$\approx 0.28 h_c$	$\approx 1.43h_c$

Безразмерные параметры расчетов

Во всех представленных результатах случай I показан слева, а случай II – справа на рисунках. Первые две «жесткие» моды показаны на рисунке 6. Первые две «упругие» моды показаны на рисунке 7. Первая мода показана фиолетовым цветом, вторая – красным, результаты для балки с переменной толщиной льда показаны сплошными линиями, а результаты для балки с постоянной толщиной – маркерами на обоих рисунках. Первая жесткая мода одинакова для балки различной толщины. Вторая жесткая мода имеет заметное отличие угла наклона для неоднородной балки с большим изменением толщины.

Рисунок 6. Первые две «жесткие» моды. Результаты расчетов показаны для набора параметров (I) на рисунке (a) и для (II) – на рисунке (б)

Рисунок 7. Первые две упругие моды. Результаты расчетов показаны для набора параметров (I) на рисунке (a) и для (II) – на рисунке (б)

Коэффициенты разложения W_{kn} разложения упругих мокрых мод по сухим модам для $3 \le k \le 12$ вычислены аналогичным образом как для балки с полностью линейной толщиной и приведены в таблице 3 для случая одного набора параметров задачи. Видно, что мокрые моды $W_k(x)$ имеют примерно те же формы, что и соответствующие сухие моды $\psi_k(x)$. Вклады других сухих мод меньше 8%.

Таблица	3
---------	---

n/k	3	4	5	6	7	8	9	10	11	12
3	1	0.023	0.056	-0.001	0.012	0.000	0.003	0.000	-0.001	0.000
4	-0.024	1	0.012	0.060	-0.001	0.014	0.002	0.004	-0.001	-0.002
5	-0.056	-0.013	1	-0.012	0.067	-0.003	0.019	0.001	-0.007	-0.001
6	0.002	-0.061	0.014	1	-0.025	0.063	-0.008	0.020	-0.001	-0.007
7	-0.008	0.000	-0.068	0.029	1	-0.041	0.067	-0.009	-0.021	-0.002
8	0.000	-0.011	0.000	-0.064	0.046	1	-0.050	0.063	0.008	-0.020
9	-0.001	-0.002	-0.015	0.004	-0.068	0.057	1	-0.057	-0.064	0.010
10	0.000	-0.003	-0.003	-0.016	0.004	-0.063	0.065	1	0.060	-0.063
11	0.001	0.001	0.005	0.003	0.017	-0.002	0.064	-0.069	1	-0.067
12	0.000	0.002	0.001	0.006	0.004	0.016	-0.004	0.062	0.075	1

Коэффициенты W_{kn} k-й мокрой моды $\psi_k(x)$ как суперпозиции сухих мод $\overline{\psi}_n(x)$.

5. Заключение

В работе изучены собственные моды и собственные частоты колебаний двумерной балки в контакте с жидкостью или без учета жидкости. В случае контакта, жидкость имеет бесконечную глубину, а ее течение предполагалось двумерным и потенциальным. Рассмотрены два случая распределения упругих характеристик балки: балка с линейной толщиной и балка, имеющая кусочно-заданную толщину. Приведен алгоритм решения задачи, вычислены формы сухих мод и частоты сухих и мокрых мод. Решения для мокрых мод получены в виде ряда сухих мод, которые определяются из соответствующей матричной задачи.

Получено, что основной вклад в мокрые моды вносят соответствующие сухие моды с теми же индексами. Частоты мокрых мод меньше частот сухих и зависят от безразмерного параметра, описывающего отношение масс балки и жидкости. Этот результат позволяет предложить следующий приближенный алгоритм определения мокрых мод и их частот: (a) форма мокрой моды принимается за форму соответствующей сухой моды, (б) частота мокрой моды аппроксимируется соответствующей сухой частотой, умноженной на коэффициент, который находится между нулем и единицей и определяется из отношения квадратов спектральных параметров сухих мод.

Список литературы

- 1. Timoshenko S., Young D.H. Vibration Problems in Engineering. 3rd edition. NY : D. Van Nostrand Co., Inc., 1955.
- 2. Batyaev E.A., Khabakhpasheva T.I. Hydroelastic waves in an ice-covered channel with linearly varying ice thickness // Fluid Dynamics. — 2022. — Vol. 57, no. 3. — P. 281–294.
- Сибирякова Т.А., Шишмарев К.А. Решение задачи о движении подводного тела в замороженном канале с линейно изменяющейся толщиной льда // МАК: Математики -Алтайскому краю. — Барнаул : Изд-во Алт ун-та, 2022. — С. 146–150.
- 4. Gradstein I.S., Ryzhik I.M. Tables of Integrals, Sums, Series, and Products. NY : Acad. Press, 1965.