Кольца целых чисел квадратичных полей

Журавлев Е.В., Токарев В.Н.

Алтайский государственный университет, Алтайский государственный технический университет evzhuravlev@mail.ru, tok321.1973@mail.ru

Аннотация

В работе рассматривается кольцо $\mathbb{Z}[\sqrt{n}] = \{a+b\sqrt{n}|a,b\in\mathbb{Z}\}$, где n – простое число. Указывается разложение элементов кольца $\mathbb{Z}[\sqrt{n}]$ на простые множители, строение его идеалов и фактор-колец.

1. Введение

Рассмотрим квадратичное поле

$$\mathbb{Q}[\sqrt{n}] = \{a + b\sqrt{n} | a, b \in \mathbb{Q}\},\$$

где n — свободное от квадратов целое число. Если n сравнимо с 2 или 3 по модулю 4, то кольцо целых квадратичного поля $\mathbb{Q}[\sqrt{n}]$ это множество линейных комбинаций вида $a+b\sqrt{n}$, где $a,b\in\mathbb{Z}$. Если же $n\equiv 1\pmod{4}$, то кольцо целых состоит из чисел вида $a+b\cdot\frac{1+\sqrt{n}}{2},\ a,b\in\mathbb{Z}$. Наша цель — изучить свойства колец вида $\mathbb{Z}[\sqrt{n}]=\{a+b\sqrt{n}|a,b\in\mathbb{Z}\}$, где n - простое положительное целое число.

Определение 1. Сопряженным элементом $\kappa z = a + b\sqrt{n} \in \mathbb{Z}\left[\sqrt{n}\right]$ называется элемент $\bar{z} = a - b\sqrt{n}$.

Определение 2. Нормой элемента $z=a+b\sqrt{n}\in\mathbb{Z}[\sqrt{n}]$ называется целое число $N(z)=a^2-nb^2.$

Заметим что:

- 1. $N(z) = 0 \Leftrightarrow z = 0$,
- 2. $\forall z \in \mathbb{Z} \left[\sqrt{n} \right] N(z) = N(\bar{z}),$
- 3. $\forall z \in \mathbb{Z} \quad N(z) = z^2$,
- 4. $\forall z_1, z_2 \in \mathbb{Z}[\sqrt{n}] \ N(z_1 z_2) = N(z_1) N(z_2).$

Очевидно, что обратимыми элементами кольца $\mathbb{Z}[\sqrt{n}]$ являются элементы с нормой ± 1 .

Определение 3. Пусть $u, v, q \in \mathbb{Z}[\sqrt{n}]$. Будем говорить, что число u делится (нацело) на число v, если существует число q такое, что u = vq.

Определение 4. Число из $\mathbb{Z}[\sqrt{n}]$ называется составным, если оно является произведением двух необратимых чисел из $\mathbb{Z}[\sqrt{n}]$. Иначе, число называется неразложимым.

Определение 5. Число из $\alpha \in \mathbb{Z}[\sqrt{n}]$ называется простым, если α – необратимое число u если $\alpha \mid (uv)$ для некоторых u u v, то $\alpha \mid u$ или $\alpha \mid v$ (см. [1,2]).

Понятие нормы и обратимого элемента тесно связано с проблемой разрешимости уравнений Пелля вида $x^2 - ny^2 = \pm 1$ (n – свободное от квадратов натуральное число), являющихся частным случаем нелинейных диофантовых уравнений.

Уравнение Пелля вида $x^2 - ny^2 = 1$ всегда имеет тривиальные решения (1;0) и (-1;0) и бесконечное множество нетривиальных (существование которых следует из теоремы Дирихле о единицах). В тоже время, для отрицательного уравнение Пелля $x^2 - ny^2 = -1$ до сих пор не существует простого алгоритма решения и не определены необходимые и достаточные условия его существования.

Предложение 1. (Теорема Дирихле). Пусть $K = \mathbb{Q}(\alpha)$ – поле степени $m = r_1 + 2r_2$, где r_1 – число вещественных корней неприводимого многочлена α , $2r_2$ – число комплексных корней этого многочлена. Тогда группа единиц (группа обратимых элементов) кольца целых алгебраических чисел является прямым произведением $A \times \langle \varepsilon_1 \rangle \times ... \times \langle \varepsilon_r \rangle$, где $r = r_1 + r_2 - 1$, $A = \langle \zeta \rangle$ – конечная циклическая группа и $\langle \varepsilon_i \rangle$ – бесконечные циклические группы.

Евклидово кольцо это область целостности R, для которой определена евклидова функция (евклидова норма) $N: R \setminus \{0\} \to \mathbb{N}_0$, такая, что возможно деление с остатком по норме меньшей нормы делителя, то есть для любых $a,b \in R, b \neq 0$ имеется представление a = bq + r, для которого N(r) < N(b) или r = 0. Кольца $\mathbb{Z}[\sqrt{m}]$, где m – положительное, но не обязательно простое число, являются евклидовыми только при m = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73, 97 (см. [3]).

2. Арифметика кольца $\mathbb{Z}[\sqrt{n}]$

Рассмотрим кольцо $\mathbb{Z}[\sqrt{n}] = \{a+b\sqrt{n}|a,b\in\mathbb{Z}\}$, где n – простое число. Пусть $\mathbb{Z}^*[\sqrt{n}]$ – группа обратимых чисел кольца $\mathbb{Z}[\sqrt{n}]$. Всюду далее будем полагать n таким простым целым числом, что $\mathbb{Z}[\sqrt{n}]$ – евклидово кольцо, относительно нормы $N(a+b\sqrt{n})=a^2-b^2n$, и в кольце \mathbb{Z} разрешимо отрицательное уравнение Пелля $x^2-y^2n=-1$, то есть существует обратимое число $\mu+\eta\sqrt{n}\in\mathbb{Z}[\sqrt{n}]$ с нормой $N(\mu+\eta\sqrt{n})=-1$. Если $N(a+b\sqrt{n})=-m$ и $N(\mu+\eta\sqrt{n})=-1$, то $N((a+b\sqrt{n})(\mu+\eta\sqrt{n}))=m$, то есть при умножении числа с отрицательной нормой на обратимое число с нормой -1 мы получаем число с положительной нормой.

Теорема 1. Пусть p – натуральное число. Тогда

$$\mathbb{Z}\left[\sqrt{n}\right]/\langle p\rangle\cong\mathbb{Z}_p\left[\sqrt{n}\right],$$

где $\mathbb{Z}_p[\sqrt{n}] = \mathbb{Z}_p[x] / \langle x^2 - n \rangle.$

Доказательство. Определим отображение

$$\varphi: \mathbb{Z}\left[\sqrt{n}\,\right] \to Z_p\left[\sqrt{n}\,\right]$$

по правилу $\varphi(x+y\sqrt{n})=[x]_p+[y]_p\sqrt{n}$, где $[\cdot]_p$ – представитель класса эквивалентности по модулю p. Это отображение, очевидно, является сюръективным кольцевым гомоморфизмом.

Докажем, что $\ker \varphi = \langle p \rangle$. Так как $\varphi(p) = [p]_p = [0]_p$, то $\langle p \rangle \subseteq \ker \varphi$. С другой стороны, если $x + y\sqrt{n} \in \ker \varphi$, то $\varphi(x + y\sqrt{n}) = [x]_p + [y]_p\sqrt{n} = [0]_p$. Следовательно, $x \equiv 0 \pmod{p}$ и $y \equiv 0 \pmod{p}$. Значит, x = px' и y = py' для некоторых целых чисел x' и y'. Поэтому $x + y\sqrt{n} = px' + py'\sqrt{n} = p(x' + y'\sqrt{n}) \in \langle p \rangle$. Следовательно, $\ker \varphi \subseteq \langle p \rangle$. В силу теоремы о гомоморфизмах $\mathbb{Z}\left[\sqrt{n}\right]/\langle p \rangle \cong \mathbb{Z}_p\left[\sqrt{n}\right]$.

Теорема 2. Пусть p – натуральное число, $p \neq 2$. Кольцо $\mathbb{Z}_p[\sqrt{n}]$ является полем тогда u только тогда, когда p – простое число, $p \neq n$ u

$$n^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

Доказательство. Предположим, что $\mathbb{Z}_p[\sqrt{n}]$ – поле. Если p – составное число, то \mathbb{Z}_p содержит делители нуля, что невозможно. Значит, p - простое число.

Если p=n, то $(\sqrt{n})^2=p$, $(\sqrt{n})^2\equiv 0\ (\mathrm{mod}\ p)$, а, значит, $\mathbb{Z}_p\left[\sqrt{n}\ \right]$ содержит делители нуля, что невозможно.

Рассмотрим кольцевой гомоморфизм

$$\varphi: \mathbb{Z}_p[x] \to \mathbb{Z}_p\left[\sqrt{n}\right],$$

определенный по правилу $\varphi(f(x))=f(\sqrt{n}),\ f(x)\in\mathbb{Z}_p[x].$ Так как $\ker\varphi=\langle x^2-n\rangle,$ то по теореме о гомоморфизмах $\mathbb{Z}_p\left[\sqrt{n}\right]\cong\mathbb{Z}_p[x]/\langle x^2-n\rangle.$ Следовательно, $\mathbb{Z}_p\left[\sqrt{n}\right]$ является полем тогда и только тогда, когда многочлен x^2-n является неприводимым по модулю p, то есть уравнение $x^2\equiv n\pmod p$ не имеет решений. Итак, n не делится на $p,\ p\neq 2$ и n не является квадратичным вычетом по модулю p, следовательно, в силу критерия Эйлера $n^{\frac{p-1}{2}}\equiv -1 \pmod p$ (символ Лежандра $\left(\frac{n}{p}\right)$ должен быть равен -1).

Для доказательства обратного утверждения достаточно повторить все рассуждения в обратном порядке. \Box

Заметим, что если p=2 и $n\neq 2$, то кольцо $\mathbb{Z}_2\left[\sqrt{n}\right]$ не является полем, так как содержит делители нуля: $(1+\sqrt{n})^2=1+n+2\sqrt{n}\equiv 0\ (\mathrm{mod}\ 2).$

Теорема 3. Если p – натуральное число, $p \neq 2$, то p – простое число в $\mathbb{Z}[\sqrt{n}]$ тогда и только тогда, когда p – простое число в $\mathbb{Z}, p \neq n$ и

$$n^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

Доказательство. Если p – простое число в $\mathbb{Z}[\sqrt{n}]$, то идеал $\langle p \rangle$ является максимальным в $\mathbb{Z}[\sqrt{n}]$, а, значит, фактор-кольцо $\mathbb{Z}[\sqrt{n}]/\langle p \rangle$ – поле. В силу теоремы 2, p – простое число в \mathbb{Z} , $p \neq n$ и $n^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Для доказательства обратного утверждения достаточно повторить все рассуждения в обратном порядке.

В работе [4] указано, что уравнение $x^2-y^2n=2$ разрешимо в \mathbb{Z} тогда и только тогда, когда $n\equiv -1\ (\text{mod }8)$. Следовательно, при $n\neq 2$ число 2 является составным в $\mathbb{Z}\left[\sqrt{n}\right]$ тогда и только тогда, когда $n\equiv -1\ (\text{mod }8)$. В случае n=2 число $2=\sqrt{2}\cdot\sqrt{2}$ также составное.

Заметим, что для любых $a+b\sqrt{n}, c+d\sqrt{n} \in \mathbb{Z}\left[\sqrt{n}\,\right]$ справедливо равенство

$$\frac{c+d\sqrt{n}}{a+b\sqrt{n}} = \frac{(c+d\sqrt{n})(a-b\sqrt{n})}{a^2-b^2n} = \frac{ac-bdn}{a^2-b^2n} + \frac{ad-bc}{a^2-b^2n}\sqrt{n}.$$

Если a и b – взаимно простые целые числа, то $c+d\sqrt{n}$ содержится в идеале $\langle ak+bk\sqrt{n} \rangle$ тогда и только тогда, когда $k(a^2-b^2n)$ делит ac-bdn и ad-bc ($k \in \mathbb{Z}$).

Теорема 4. Если a, b – взаимно простые целые числа и $a^2 - b^2 n > 0$, то

$$\mathbb{Z}\left[\sqrt{n}\right]/\langle a+b\sqrt{n}\rangle \cong \mathbb{Z}_{a^2-b^2n}.$$

Доказательство. Пусть $m=a^2-b^2n$. Так как a и b — взаимно простые целые числа, то b — взаимно просто с числом a^2-b^2n и поэтому элемент $[b]_m$ обратим в $\mathbb{Z}_{a^2-b^2n}$ ($[\cdot]_m$ — представитель класса эквивалентности по модулю m). Так как $a^2-b^2n\equiv 0\pmod m$, то $a^2\equiv b^2n\pmod m$, $(ab^{-1})^2\equiv n\pmod m$.

Определим отображение $\varphi: \mathbb{Z}\left[\sqrt{n}\right] \to \mathbb{Z}_{a^2-b^2n}$ по правилу $\varphi(x+y\sqrt{n}) = [x-y(ab^{-1})]_m$. Очевидно, что φ является сюръективным. Пусть $\alpha = x + y\sqrt{n}$ и $\beta = z + t\sqrt{n} \in \mathbb{Z}\left[\sqrt{n}\right]$. Тогда

$$\varphi(\alpha)\varphi(\beta) = \varphi(x + y\sqrt{n})\varphi(z + t\sqrt{n}) = [(x - yab^{-1})(z - tab^{-1})]_m =$$

$$= [xz + a^2b^{-2}yt - (xt + yz)ab^{-1}]_m = [(xz + ytn) - (xt + yz)ab^{-1}]_m =$$

$$= \varphi((xz + ytn) + (xt + yz)\sqrt{n}) = \varphi((x + y\sqrt{n})(z + t\sqrt{n})) = \varphi(\alpha\beta).$$

Так как $\varphi(a+b\sqrt{n})=[a-ab^{-1}b]_m=[0]_m$, то $\langle a+b\sqrt{n}\rangle\subseteq\ker\varphi$. Пусть $c+d\sqrt{n}\in\ker\varphi$ и $c+d\sqrt{n}=(a+b\sqrt{n})(x+y\sqrt{n})$, где $x,y\in\mathbb{Q}$. Так как $\varphi(c+d\sqrt{n})=[c-ab^{-1}d]_m=[0]_m$, то $[c]_m=[ab^{-1}d]_m$, $[bc]_m=[ad]_m$, $[ad-bc]_m=[0]_m$, а, следовательно, $ad-bc=k(a^2-b^2n)$ для некоторого $k\in\mathbb{Z}$. Тогда из равенства

$$\frac{c+d\sqrt{n}}{a+b\sqrt{n}} = \frac{ac-bdn}{a^2-b^2n} + \frac{ad-bc}{a^2-b^2n}\sqrt{n} = x + y\sqrt{n},$$

получаем

$$y = \frac{ad - bc}{a^2 - b^2n} = \frac{k(a^2 - b^2n)}{a^2 - b^2n} = k \in \mathbb{Z}.$$

Умножая равенство $[ad-bc]_m=[0]_m$ на ab, получаем $[a^2bd-ab^2c]_m=[a^2b^{-2}bd-ac]_m=[0]_m$. Так как $(ab^{-1})^2=n$, то $[ac-bdn]_m=[0]_m$, а, следовательно, $ac-bdn=k(a^2-b^2n)$, для некоторого $k\in\mathbb{Z}$, и

$$x = \frac{ac - bdn}{a^2 - b^2n} = \frac{k(a^2 - b^2n)}{a^2 - b^2n} = k \in \mathbb{Z}.$$

Итак, x и y - целые числа, $c+d\sqrt{n}\in\langle a+b\sqrt{n}\rangle$ и $\ker\varphi\subseteq\langle a+b\sqrt{n}\rangle$. Таким образом, $\ker\varphi=\langle a+b\sqrt{n}\rangle$ и $\mathbb{Z}\left[\sqrt{n}\right]/\langle a+b\sqrt{n}\rangle\cong\mathbb{Z}_{a^2-b^2n}$.

Теорема 5. Если a u b — взаимно простые целые числа u $a^2 - b^2 n > 0$, то $a + b\sqrt{n}$ — простое число в $\mathbb{Z}\left[\sqrt{n}\right]$ тогда u только тогда, когда $p = a^2 - b^2 n$ — простое число в \mathbb{Z} .

Доказательство. Пусть $z = a + b\sqrt{n}$ – простое число в $\mathbb{Z}[\sqrt{n}]$, тогда $\mathbb{Z}[\sqrt{n}]/\langle a + b\sqrt{n}\rangle \cong \mathbb{Z}_{a^2-b^2n}$ – поле и $a^2 - b^2n$ – простое целое число. В обратную сторону доказательство аналогично.

Если $p=a^2-b^2n$ – простое число в $\mathbb Z$ $(a,b\in\mathbb Z)$ и $p\neq 2,\,p\neq n,$ то

$$n^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

Действительно, так как $p=a^2-b^2n=N(a+b\sqrt{n}),$ то p – составное число в $\mathbb{Z}\left[\sqrt{n}\right],$ а, следовательно, в силу теоремы $\frac{3}{2},$ $n^{\frac{p-1}{2}}\equiv 1\pmod{p}.$

Теорема 6. Число π – простое в $\mathbb{Z}[\sqrt{n}]$ тогда и только тогда, когда оно имеет один из следующих видов:

- 1. $\pi = p\varepsilon$, $\varepsilon \partial e \ p npocmoe \ uucno \ e \ \mathbb{Z}, \ p \neq 2 \ u \ n^{\frac{p-1}{2}} \equiv -1 \ (\text{mod } p), \ \varepsilon \in \mathbb{Z}^* [\sqrt{n}];$
- 2. $\pi = 2\varepsilon$, $\varepsilon \in \mathbb{Z}^* [\sqrt{n}]$ (только если $n \not\equiv -1 \pmod{8}$ и $n \not\equiv 2$);
- 3. $\pi = (a + b\sqrt{n})\varepsilon$, где $a^2 b^2n = p$ простое число в \mathbb{Z} , $p \neq 2$, $n^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, $\varepsilon \in \mathbb{Z}^* \lceil \sqrt{n} \rceil$;

4.
$$\pi = (c + d\sqrt{n})\varepsilon$$
, где $c^2 - d^2n = 2$, $\varepsilon \in \mathbb{Z}^* [\sqrt{n}]$ (только если $n \equiv -1 \pmod{8}$);

5.
$$\pi = \sqrt{n} \, \varepsilon$$
, $\varepsilon \partial e \, \varepsilon \in \mathbb{Z}^* [\sqrt{n}]$.

Доказательство. Утверждение является следствием вышеуказанных теорем. Заметим лишь, что если $a^2-b^2n=n$ – простое число, то a^2 делится на n и, следовательно, a=kn, для некоторого $k\in\mathbb{Z}$. Тогда $a^2-b^2n=k^2n^2-b^2n=n$, $k^2n-b^2=1$, $b^2-k^2n=-1$ и $b-k\sqrt{n}, b+k\sqrt{n}\in\mathbb{Z}^*\left[\sqrt{n}\right]$. Таким образом, $a-b\sqrt{n}=kn-b\sqrt{n}=-\sqrt{n}(b-k\sqrt{n})$ и $a+b\sqrt{n}=kn+b\sqrt{n}=-\sqrt{n}(b+k\sqrt{n})$, то есть числа $a\pm b\sqrt{n}$ имеют вид, указанный в пункте 5 условия теоремы.

Так как мы изначально полагаем, что $\mathbb{Z}[\sqrt{n}]$ – евклидово кольцо, то $\mathbb{Z}[\sqrt{n}]$ – кольцо главных идеалов и для всякого числа $\sigma \in \mathbb{Z}[\sqrt{n}]$ единственным образом определено разложение на простые множители:

1. если $n \not\equiv -1 \pmod{8}$ и $n \not\equiv 2$, то

$$\sigma = \prod_{i=1}^{k_1} p_i^{u_i} \cdot \prod_{i=1}^{k_2} \left(a_i + b_i \sqrt{n} \right)^{v_i} \cdot 2^m \cdot \left(\sqrt{n} \right)^l \cdot \varepsilon,$$

2. если $n \equiv -1 \pmod{8}$ или n = 2, то

$$\sigma = \prod_{i=1}^{k_1} p_i^{u_i} \cdot \prod_{i=1}^{k_2} \left(a_i + b_i \sqrt{n} \right)^{v_i} \cdot \prod_{i=1}^{k_3} \left(c_i + d_i \sqrt{n} \right)^{w_i} \cdot \left(\sqrt{n} \right)^l \cdot \varepsilon,$$

где $\varepsilon \in \mathbb{Z}^* [\sqrt{n}], k_1, k_2, k_3, u_i, v_i, w_i, l, m \in \mathbb{N} \cup \{0\}, a_i, b_i, c_i, d_i \in \mathbb{Z}, p_i$ – некоторые простые целые числа, $p_i \neq 2$, $n^{\frac{p_i-1}{2}} \equiv -1 \pmod{p_i}, a_i^2 - b_i^2 n = q_i$ – простые целые числа, $q_i \neq 2$, $n^{\frac{q_i-1}{2}} \equiv 1 \pmod{q_i}, c_i^2 - d_i^2 n = 2$.

Рассмотрим фактор-кольца по различным идеалам кольца $\mathbb{Z}\left[\sqrt{n}\right]$.

Случай 1. Пусть p – простое целое число, $p \neq 2$, $n^{\frac{p-1}{2}} \equiv -1 \pmod p$ и $\alpha \in \mathbb{N}$. Тогда

$$\mathbb{Z}\left[\sqrt{n}\,\right]/\left\langle p^{\alpha}\right\rangle \cong \mathbb{Z}_{p^{\alpha}}\left[\sqrt{n}\,\right] = \mathbb{Z}_{p^{\alpha}}[x]/\left\langle x^{2} - n\right\rangle.$$

Многочлен $x^2 - [n]_p$ неприводим в \mathbb{Z}_p , следовательно, $S = \mathbb{Z}_{p^{\alpha}}[x] / \langle x^2 - n \rangle$ – локальное кольцо, которое также называют кольцом Галуа. Радикал Джекобсона $J(S) = \langle \overline{p} \rangle$, $J(S)^{\alpha} = 0$ и $S/J(S) = GF(p^2)$.

Случай 2. Пусть $a^2-b^2n=p$ – простое число в $\mathbb{Z},\,p\neq 2,\,n^{\frac{p-1}{2}}\equiv 1\pmod p$ и $\alpha\in\mathbb{N}.$ Тогда

$$\mathbb{Z}\left[\sqrt{n}\right]/\left\langle (a+b\sqrt{n})^{\alpha}\right\rangle \cong \mathbb{Z}_{p^{\alpha}}.$$

Случай 3. Пусть $c^2 - d^2 n = 2$ и $\alpha \in \mathbb{N}$. Тогда

$$\mathbb{Z}\left[\sqrt{n}\right]/\left\langle (c+d\sqrt{n})^{\alpha}\right\rangle \cong \mathbb{Z}_{2^{\alpha}}.$$

Случай 4. Пусть $\alpha \in \mathbb{N}$. Тогда

$$\mathbb{Z}\left[\sqrt{n}\,\right]/\left\langle (\sqrt{n}\,)^{\alpha}\right\rangle \cong \mathbb{Z}_{n^{\frac{\alpha}{2}}}\!\!\left[\sqrt{n}\,\right],$$

если α – четное число,

$$\mathbb{Z}\left[\sqrt{n}\right]/\left\langle (\sqrt{n}\,)^{\alpha}\right\rangle = \mathbb{Z}\left[\sqrt{n}\right]/\left\langle n^k\sqrt{n}\right\rangle \cong \mathbb{Z}[x]/\left\langle x^2-n,n^kx\right\rangle,$$

если $\alpha = 2k + 1$ – нечетное число, $k \in \mathbb{Z}$.

Теорема 7. Пусть $\sigma \in \mathbb{Z}[\sqrt{n}]$. Тогда справедливы следующие разложения

1. если $n \not\equiv -1 \pmod{8}$ и $n \not\equiv 2$, то

$$\mathbb{Z}\left[\sqrt{n}\right]/\langle\sigma\rangle\cong\bigoplus_{i=1}^{k_1}\mathbb{Z}_{p_i^{u_i}}\left[\sqrt{n}\right]\bigoplus_{i=1}^{k_2}\mathbb{Z}_{q_i^{v_i}}\bigoplus\mathbb{Z}_{2^m}\left[\sqrt{n}\right]\bigoplus\mathbb{Z}_{n^k}\left[\sqrt{n}\right]$$

uлu

$$\mathbb{Z}\left[\sqrt{n}\right]/\langle\sigma\rangle\cong\bigoplus_{i=1}^{k_1}\mathbb{Z}_{p_i^{u_i}}\left[\sqrt{n}\right]\bigoplus_{i=1}^{k_2}\mathbb{Z}_{q_i^{v_i}}\bigoplus\mathbb{Z}_{2^m}\left[\sqrt{n}\right]\bigoplus\mathbb{Z}[x]/\langle x^2-n,n^kx\rangle$$

2. $ecnu \ n \equiv -1 \pmod{8} \ unu \ n = 2, mo$

$$\mathbb{Z}\left[\sqrt{n}\right]/\langle\sigma\rangle\cong\bigoplus_{i=1}^{k_1}\mathbb{Z}_{p_i^{u_i}}\left[\sqrt{n}\right]\bigoplus_{i=1}^{k_2}\mathbb{Z}_{q_i^{v_i}}\bigoplus_{i=1}^{k_3}\mathbb{Z}_{2^{w_i}}\bigoplus\mathbb{Z}_{n^k}\left[\sqrt{n}\right]$$

u n u

$$\mathbb{Z}\left[\sqrt{n}\right]/\langle\sigma\rangle \cong \bigoplus_{i=1}^{k_1} \mathbb{Z}_{p_i^{u_i}}\left[\sqrt{n}\right] \bigoplus_{i=1}^{k_2} \mathbb{Z}_{q_i^{v_i}} \bigoplus_{i=1}^{k_3} \mathbb{Z}_{2^{w_i}} \bigoplus \mathbb{Z}[x]/\langle x^2 - n, n^k x \rangle$$

где $k, k_1, k_2, k_3, u_i, v_i, w_i, m \in \mathbb{N} \cup \{0\}, p_i$ – простые целые числа, $p_i \neq 2, n^{\frac{p_i-1}{2}} \equiv -1 \pmod{p_i},$ $a_i^2 - b_i^2 n = q_i$ – простые целые числа, $a_i, b_i \in \mathbb{Z}, q_i \neq 2, n^{\frac{q_i-1}{2}} \equiv 1 \pmod{q_i}.$

Доказательство теоремы следует из китайской теоремы об остатках.

Рассмотрим частный случай – кольцо $\mathbb{Z}\left[\sqrt{2}\right]$. Это кольцо является евклидовым и отрицательное уравнение Пелля $x^2 - y^2 n = -1$ разрешимо при n = 2, так как $N(1+\sqrt{2}) = -1$.

Теорема 8. Число π – простое в $\mathbb{Z}\left[\sqrt{2}\right]$ тогда и только тогда, когда оно имеет один из следующих видов:

- 1. $\pi = p\varepsilon$, где p простое число в \mathbb{Z} , p = 8k + 3 или p = 8k + 5, для некоторого $k \in \mathbb{Z}$, $\varepsilon \in \mathbb{Z}^* \left[\sqrt{2} \right]$;
- 2. $\pi = (a + b\sqrt{2})\varepsilon$, где $a^2 2b^2 = p$ простое число в \mathbb{Z} , p = 8k + 1 или p = 8k + 7, для некоторого $k \in \mathbb{Z}$, $\varepsilon \in \mathbb{Z}^* \left[\sqrt{2} \right]$;
- 3. $\pi = \sqrt{2} \varepsilon$, $\epsilon \partial e \varepsilon \in \mathbb{Z}^* \left[\sqrt{2} \right]$.

Доказательство следует из теоремы 6. Заметим, что при n=2 символ Лежандра $\left(\frac{n}{p}\right)$ вычисляется по формуле

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

Следовательно, если p = 8k+1 или p = 8k+7, то число 2 является квадратичным вычетом по модулю p, а если p = 8k+3 или p = 8k+5, то не является $(k \in \mathbb{Z})$.

Теорема 9. Пусть $\sigma \in \mathbb{Z}\left[\sqrt{2}\right]$, тогда

$$\mathbb{Z}\left[\sqrt{2}\right]/\langle\sigma\rangle\cong\bigoplus_{i=1}^{k_1}\mathbb{Z}_{p_i^{u_i}}\left[\sqrt{2}\right]\bigoplus_{i=1}^{k_2}\mathbb{Z}_{q_i^{v_i}}\bigoplus\mathbb{Z}_{2^k}\!\!\left[\sqrt{2}\right]$$

u n u

$$\mathbb{Z}\left[\sqrt{2}\right]/\left\langle\sigma\right\rangle \cong \bigoplus_{i=1}^{k_1} \mathbb{Z}_{p_i^{u_i}}\left[\sqrt{2}\right] \bigoplus_{i=1}^{k_2} \mathbb{Z}_{q_i^{v_i}} \bigoplus \mathbb{Z}[x]/\left\langle x^2 - 2, 2^k x \right\rangle$$

где $k, k_1, k_2, u_i, v_i \in \mathbb{N} \cup \{0\}$, p_i – простые целые числа, $p_i = 8k_i + 3$ или $p_i = 8k_i + 5$, для некоторых $k_i \in \mathbb{Z}$, $a_i^2 - b_i^2 n = q_i$ – простые целые числа, $a_i, b_i \in \mathbb{Z}$, $p_i = 8k_i + 1$ или $p_i = 8k_i + 7$, для некоторых $k_i \in \mathbb{Z}$.

Список литературы

- 1. Dresden G., Dymacek W.M. Finding factors of factor rings over the Gaussian integers // Amer. Math. Monthly. -2005. Vol. 7(112). P. 602–611.
- 2. Dekker T.J. Prime numbers in Quadratic fields // CWI Quarterly. 1994. no. 7. P. 367—394.
- 3. Хассе Г. Лекции по теории чисел. М. : Наука, 1953.
- 4. Венков Б.А. Элементарная теория чисел. М. : Объединенное научно-техническое издательство НКТП СССР, 1937.