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Abstract

In this paper we formulate some problems of the theory of homogeneous spaces. In
particular, we discuss a behaviour of the Ricci solitons under the conformal deformations
of the initial metric. In addition, we present some problems the theory of geodesically
orbital spaces.

In recent years intensively investigated Ricci solitons, i.e. Riemannian manifolds (M, g),
which satisfy to the differential equation:

r(g) = Λg + LX(g),

where r(g) is the Ricci tensor of the metric g, Λ is a real constant, LX(g) is the Lie derivative
of g in the direction of a full vector field X.

Note that in the case where LX(g) = 0, we have the usual Einstein equation for the
Riemannian manifolds and the corresponding solitons are called trivial. Thus, Ricci solitons
are a natural generalization of the Riemannian manifolds with metric of Einstein, and the
theory of solitons is a generalization of the theory of Riemann manifolds with Einstein metric.
Einstein manifolds and methods of their construction are well known (see., for example, the
surveys [1,2]). In particular, a deformation of the initial Riemannian metric is one of the ways
of constructing new Einstein metrics. We note that conformal deformation is one of them :
g1 = e2fg, where f = f(x) is a smooth function on M . Under this deformation the Ricci tensor
and the Lie derivative are changed by the formulas:

r1 = r − (n− 2)(Ddf − df ◦ df) + (∆f − (n− 2)|df |2)g

LX(e2fg) =
〈
X, grade2f

〉
g + e2fLX(g),

where Df is the gradient, ∆f is the Laplacian and Ddf is the Hessian of f with respect
to g. It is clear, therefore, that there is an opportunity to construct new Ricci solitons from
existing. In particular, assuming that M = G/H is a homogeneous space, and (M = G/H, g)
is homogeneous, or algebraic Ricci soliton, we obtain a system of algebraic and differential
equations defining the new Ricci solitons on locally conformally homogeneous spaces.

Problem 1. Construct new Ricci solitons with the help of the conformal deformation of the
initial metric.

Since a homogeneous space (M,ρ) is geodesically complete, there arises the problem on the
behavior of geodesic curves on such spaces, their closure, and on their self-intersection. The
following theorem is known in this direction.
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Theorem 1. (see [3,4]). Geodesics on homogeneous spaces are merely closed curves or unclosed
curves without self-intersections.

Moreover, the following theorem is proved in the work [4] of M.V. Mechsheryakov.

Theorem 2. Geodesic curves of a left-invariant metric on a connected and simply connected
nilpotent Lie group are not closed.

The following two problems arise in a natural way:

Problem 2. (A. Besse). Find homogeneous Riemannian manifolds all of whose geodesics are
closed.

Problem 3. Describe homogeneous (pseudo)Riemannian manifolds all of whose geodesics are
unclosed.

Problem 4. Describe a behavior of the geodesic curves on homogeneous pseudo-Riemannian
manifolds.

For the first time, the Besse problem was considered in the class of normal homogeneous
spaces, i.e., those spaces (G/H, ρ) whose homogeneous Riemannian metric ρ is obtained from
the Ad(G)-invariant inner product of a Lie group G under the projection π : G → G/H. The
following theorem was proved in [5].

Theorem 3. (see [5]). Let (G/H, ρ) be a simply connected, normal homogeneous Riemannian
spaceall of whose geodesics are closed. Then (G/H, ρ) is isometric to a compact symmetric space
of rank 1 (CSROS: Sn, CP k, HPm, and CaP 2).

Later on, by using purely topological methods, the following theorem was proved in [5] for
arbitrary homogeneous Riemannian manifolds.

Theorem 4. (see [5]). A simply connected homogeneous Riemannian manifold all of whose
geodesicsare closed and have the same length is isometric to a CSROS.

Simultaneously, a geometric proof of this theorem having no requirement on the lengths of
geodesics was given [6, 7].

Theorem 5. (see [6, 7]). A simply connected Riemannian manifold all of whose geodesics are
closed is isometric to a CSROS.

The main idea of the proof of Theorem 5 is as follows. If the structure of (G/H, ρ) is
complicated, then we seek a flat totally geodesic torus T inM = G/H whose irrational winding
is unclosed. Then a finite list of manifolds remains, which is examined step-by-step.

Definition 1. A geodesic γ of a Riemannian manifold (M,ρ) is said to be homogeneous if it
is an orbit of a one-parameter subgroup g(t) of Isom(M,ρ).

The following theorem is known.

Theorem 6. (see [8]). Every homogeneous Riemannian manifold has at least one homogeneous
geodesic passing through any point given in advance.

As is conventional, a geodesic γ is said to be maximal if it is not the restriction of any other
geodesic.

Definition 2. A homogeneous manifold (G/H, ρ) is called a geodesically orbital space if all of
its maximal geodesics are homogeneous.
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Remark 1. Naturally reductive and, in particular, normal homogeneous spaces are geodesically
orbital spaces.

There naturally arises the problem on the existence of a geodesically orbital space different
from a naturally reductive space. The first such example was constructed by A. Kaplan [9].
This example is the six-dimensional nilpotent Lie group with two-dimensional center (one of
the generalized Heisenberg groups) equipped with a certain left-invariant metric.

The class of weakly symmetric spaces is closely related to the class of geodesically orbital
spaces.

Definition 3. A Riemannian manifold M is said to be a weakly symmetric space if for every
pair of points p, q of M , there exists an isometry of M interchanging the points p and q.

It is clear that any symmetric space is weakly symmetric and naturally reductive. Also,
geodesic spheres in symmetric spaces of rank 1 are weakly symmetric. Note that there exist
weakly symmetric spaces which are not even naturally reductive. For example, geodesic spheres
in the Cayley projective plane CaP 2 are such spaces. J. Berndt, O. Kowalski, and L. Vanhecke
obtained the following result in [10].

Theorem 7. (see [10]). Every weakly symmetric space M is geodesically orbital.

Many examples of weakly symmetric spaces were constructed by W. Ziller in [11]. The
geodesically orbital spaces of dimension 6 6 were classified by O. Kowalski and L. Vanhecke
in [12]. It turns out that all geodesically orbital spaces of dimension 6 5 are naturally reductive.
At the same time, in the case of dimension equal to 6, there exist three- and two-parameter
families of geodesically orbital spaces that are not naturally reductive. Among these families,
there is the compact symmetric homogeneous space SO(5)/U(2) having a two-parameter family
of invariant metrics.

The structure of geodesically orbital spaces was also studied by Gordon in [13], where the
case of nilpotent Lie groups with left-invariant Riemannian metric was studied in detail.

Among recent works, we can mention the work D. Alekseevsky and A. Arvanitoyeorgos [14]
devoted to metrics with homogeneous geodesics on flag manifolds.

At the same time, the following problems remain unsolved.

Problem 5. Classify all geodesically orbital (pseudo)Riemannian spaces.

Problem 6. Find Jacobi fields and conjugate points along geodesic curves on the geodesically
orbital (pseudo)Riemannian spaces.

In concluding we mention the works about other problems in the theory of homogeneous
spaces [15–24].
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