Об исследовании одного класса штрафных функций

Саженков А.Н., Саженкова Т.В., Пронь С.П. Алтайский государственный университет sazhenkov an@mail.ru, pspron@mail.ru

Аннотация

Для исследуемого класса функций представлен обзор результатов ранее полученных авторами: установлена принадлежность к внешним штрафным функциям для решения задач выпуклого программирования; получена оценка скорости сходимости приближённых решений к точному решению, в предположении, что задачи на безусловный экстремум решаются точно; проведено численное решение ряда задач.

В работе применительно к задачам нелинейного программирования исследуется класс функций, обладающих хорошими дифференциальными свойствами и стремлением в бесконечность вне допустимой области.

Пусть рассматривается задача минимизации выпуклой функции f на компакте $D \subset \mathbb{R}^n$, задаваемом системой неравенств

$$g_j(x) \leq 0, \quad j = 1, 2, \dots, m,$$

с выпуклыми функциями g_i .

Предполагается существование такой точки x_0 , что $g_j(x_0) < 0$ для всех j.

Теоретические исследования базируются на установленных в [1,2] достаточных условиях сходимости метода штрафов.

Изучаемая здесь система функций:

$$\Phi_k^{(t)}(x) = A_k \sum_{j=1}^m \left(g_j(x) + \sqrt{g_j^2(x) + A_k^{-2-t}} \right),$$

 $t \geqslant 0$ – константа, $A_k > 0$, $A_k \to +\infty$ при $k \to +\infty$.

Приведенные далее теоремы о принадлежности этого класса функций к внешним штрафным функциям и об оценке скорости сходимости метода для данного класса функций штрафа при t>0 устанавливаются, в отличие от [2], без использования понятия функций, обладающих ϕ -свойством.

Теорема 1. Функции $\Phi_k^{(t)}(x)$ в указанных выше условиях обладают свойствами:

- 1. $\Phi_k: \mathbb{R}^n \to \mathbb{R}$ выпуклые функции;
- 2. $\lim_{k \to \infty} \Phi_k(x) = 0$, $ecnu \ x \in intD$;
- 3. $\lim_{k\to\infty} \Phi_k(x) = +\infty$, echu $x \notin D$;
- 4. Начиная с некоторого K, функции $F_k(x) = f(x) + \Phi_k(x)$ достигают своего безусловного минимума, последовательность $\{x^k\}$ точек минимума функций $F_k(k \geqslant K)$ ограничена, любая ее предельная точка принадлежит множеству D и доставляет минимум f на D.

Доказательство этой теоремы для t > 0 без использования понятия функций, обладающих ϕ -свойством, проведено в [3], для t = 0 в [4].

Теорема 2. Если функции $f \in C^2(\mathbb{R}^n)$, $g_j \in C^1(\mathbb{R}^n)$, j = 1, 2, ..., m, $(f''(x)\varepsilon, \varepsilon) \geqslant \gamma \|\varepsilon\|^2$ при некотором $\gamma > 0$ и любых x и ε , тогда для t > 0 $\|x^k - x^*\|^2 \leqslant \frac{2m}{\gamma} A_k^{-\frac{t}{2}}$ при $k \geqslant K$ (x* – решение исходной задачи).

Доказательство теоремы 2 представлено в [5], некоторые неточности которого устранены в [3].

Численные исследования демонстрируют возможность использования этого класса штрафных функций и для задач, не подпадающих строго под описанные выше требования.

Примеры для численного исследования с указанными функциями штрафа [5] взяты из [6], где их решение осуществлялось с помощью квадратичной и логарифмической функций штрафа.

Получающиеся задачи на безусловный экстремум решались методом наискорейшего спуска с градиентным критерием останова: $||gradf(x^{k+1})|| < \varepsilon$, $\varepsilon = 10^{-6}$ при t = 1.

Пример 1. Найти минимум функции f(x,y) = -xy при условиях $x + y^2 - 1 \leqslant 0$, $-x - y \leqslant 0$.

Точное аналитическое решение данной задачи:

$$(x^*; y^*) = \left(\frac{2}{3}; \frac{\sqrt{3}}{3}\right) \approx (0, 667; 0, 577), \quad f^* = -\frac{2\sqrt{3}}{9} \approx -0, 3849.$$

В вычислениях методом штрафов с коэффициентами $A_k=2^{k-1}$ получены следующие результаты:

Таблица 1

k	x	y	F(x,y)	f(x,y)
1	0,525748	0,509974	0,944355	-0,268118
2	0,435419	0,470846	0,227288	-0,205015
3	0,599608	0,547333	-0,263514	-0,328186
4	0,657058	0,573103	-0,36879	-0,376562
5	0,664966	0,577533	-0,384040	-0,383179
6	0,673607	0,571203	-0,384697	-0,384766
7	0,667040	0,577019	-0,384890	-0,384895

Пример 2. Найти минимум функции $f(x,y) = \ln x - y$ при условиях $1 - x \leqslant 0$, $x^2 + y^2 - 4 = 0$.

Точное решение задачи:

$$(x^*; y^*) = (1; \sqrt{3}), \quad f^* = -\sqrt{3} \approx -1,7321.$$

Вычисления с коэффициентами $A_k = 2^{k-1}$ дали следующие результаты:

Таблица 2

k	x	y	F(x,y)	f(x,y)
4	1,059744	1,696395	-0,814586	-1,638386
5	1,032600	1,712857	-1,123939	-1,680777
6	1,016953	1,722159	-1,323716	-1,705348
7	1,008632	1,727039	-1,454479	-1,718444
8	1,004352	1,729531	-1,541443	-1,725188
9	1,002180	1,730791	-1,600124	-1,728614
10	1,001087	1,731423	-1,640196	-1,730336
11	1,000536	1,731741	-1,667816	-1,731205
15	1,000020	1,732040	-1,716300	-1,732020

Численные результаты примеров показывают хорошую сходимость последовательных приближений к точному решению.

Список литературы

- 1. Каплан А.А. Характеристические свойства функций штрафа // Докл. АН СССР. 1973. Т. 210, № 5.
- 2. Гроссман К., Каплан А.А. Нелинейное программирование на основе безусловной минимизации. Новосибирск: Наука, 1981.
- 3. Карпова И.С., Саженкова Т.В. О применении некоторых классов штрафных функций в решении нелинейных задач с ограничениями // Сборник трудов молодых учёных. Вып. 12. Барнаул: Изд-во Алт. ун-та, 2015.
- 4. Гончарова А.В., Саженкова Т.В. Применение штрафных функций в решении экстремальных задач с ограничениями // Сборник трудов всероссийской конференции по математике МАК-2016. Барнаул: Изд-во Алт. ун-та, 2016.
- 5. Пронь С.П., Саженкова Т.В. О численном исследовании одного класса штрафных функций // Вестник АлтГПА: Естественные и точные науки. 2010. № 2.
- 6. Фиакко А., Мак-Кормик Г. Нелинейное программирование. Методы последовательной безусловной минимизации. М. : Мир, 1972.