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Abstract
The main purpose of this paper is to investigate the Schouten–Weyl tensor

on the three-dimensional Lie groups with left-invariant Lorenzian metrics. The left-in-
variant Lorentzian metrics on the three-dimensional Lie groups with squared length zero
Schouten–Weyl tensor are studied. Moreover, the three-dimensional metric Lie groups
with almost harmonic (i.e. with zero curl and divergence) Schouten–Weyl tensor
are investigated. In addition, the question about the harmonicity of contraction
of the Schouten–Weyl tensor is considered.

1. Introduction

The fundamental monography [1] give us a survey about the Riemannian metrics
with harmonic Weyl tensor. In dimension three, the Weyl tensor is trivial, therefore we
consider the Schouten–Weyl tensor (the Cotton tensor), which plays a role of the Weyl
tensor. The Schouten–Weyl tensor was investigated in [2] for the case of left-invariant
Lorentzian metrics on the three-dimensional Lie groups. The previous paper was a continuation
of J. Milnor’s paper [3] about the left-invariant Riemannian metrics on three-dimensional
Lie groups. A classification of the three-dimensional metric Lie algebras of the Lie groups
with a left-invariant Riemannian metric and trivial divergence and curl of the Schouten–Weyl
tensor is given in [4].

2. Basic notation and facts

Let G be a Lie group, {g, [·.·]} is a corresponding Lie algebra. We denote a left-invariant
Lorentzian metric on G by 〈·, ·〉, Levi-Civita connection by ∇, curvature tensor and Ricci tensor
by R and r, which defined by the following

R (X, Y )Z = [∇Y ,∇X ]Z +∇[X,Y ]Z, r (X, Y ) = tr (Z 7→ R (X,Z)Y ) .

Further we fix a basis {E1, E2, . . . , En} of left-invariant vector fields in g and set

[Ei, Ej] = ckijEk, 〈Ei, Ej〉 = gij, (1)

where {ckij} are a structure constants of the Lie algebra and {gij} is a metric tensor.
We consider the one-dimensional curvature tensor A and Schouten–Weyl tensor SW , which

defined by the formulas

Aik =
1

n− 2

(
rik −

ρgik
2(n− 1)

)
, SWijk = Aij,k − Aik,j,

where ρ is a scalar curvature, Aij,k are a covariant derivatives of Aij.
The squared length of the Schouten–Weyl tensor is defined by

‖SW‖2 = SWijkSW
ijk.
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Definition 1. A tensor T is isotropic, if ‖T‖2 = 0 and T 6= 0.

Definition 2. A tensor Ti1...ip is harmonic (cf. [5, p.43]), if:

1. Ti1···ip is antisymmetric,

2. curl(Ti1i2···ip) = 0 or Ti1i2···ip,t = Tti2···ip,i1 + Ti1t···ip,i2 + · · ·+ Ti1i2···t,ip,

3. div(Ti1i2···ip) = gi1tTi1...ip,t = 0.

We note that the antisymmetric part SW[ijk] and symmetric part SW(ijk)

of the Schouten–Weyl tensor vanish. Thus, condition 1) of Definition 2 is not satisfied
by the Schouten–Weyl tensor.

Definition 3. A tensor Ti1...ip is said to be almost harmonic if:

1. curl(Ti1i2···ip) = 0,

2. div(Ti1i2···ip) = 0.

For the Schouten–Weyl tensor SWijk we introduce the divergence of type I and II by

div1(SW ) = gitSWijk,t, and div2(SW ) = gjtSWijk,t.

Let V = V iEi be a left-invariant vector field, which is identified with the vector {V k}.
Let wij be the contraction of the Schouten–Weyl tensor SWkij with the vector field {V k}, i.e.

wij = V kSWkij. (2)

Since the Schouten–Weyl tensor SWkij is antisymmetric with respect to i and j, the tensor wij

is antisymmetric. The covariant derivatives of wij have the form

wij,k = wljΓ
l
ki + wilΓ

l
kj.

The curl and divergence of the tensor wij are expressed as

curl(w) = wij,t − wtj,i − wit,j,

div(w) = gitwij,t.

The length of the vector field {V k} squared is expressed as

‖V ‖2 = gijV
iV j, (3)

where gij is the metric tensor of Lorentzian signature.
Together with the arbitrary vector fields we consider the harmonic vector fields.

Definition 4. A vector field {V i} is called harmonic if:

1. curl(V ) = V i
,j − V

j
,i = 0 ,

2. div(V ) = V i
,i = 0,

where the covariant derivatives of {V i} are found by

V i
,k = −V lΓi

lk.

Further classification results for three-dimensional Lorentzian Lie groups was obtained in [2,
6].
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Theorem 1. Let G be a three-dimensional unimodular Lie group with left-invariant Lorentzian
metric. Then there exists a pseudo-orthonormal frame field {e1, e2, e3}, such that the metric
Lie algebra of G is one of the following:

1.

A1 :

[e1, e2] = λ3e3,

[e1, e3] = −λ2e2,
[e2, e3] = λ1e1,

with e1 timelike;

2.

A2 :

[e1, e2] = (1− λ2) e3 − e2,
[e1, e3] = e3 − (1 + λ2) e2,

[e2, e3] = λ1e1,

with e3 timelike;

3.

A3 :

[e1, e2] = e1 − λe3,
[e1, e3] = −λe2 − e1,
[e2, e3] = λ1e1 + e2 + e3,

with e3 timelike;

4.

A4 :

[e1, e2] = λ3e2,

[e1, e3] = −βe1 − αe2,
[e2, e3] = −αe1 + βe2,

with e1 timelike and β 6= 0.

Remark 1. There are exactly six nonisomorphic three-dimensional unimodular Lie algebras and
the corresponding types of three-dimensional unimodular Lie groups (see [3]). All of them are
listed in the Table 1 together with conditions on structure constants for which the Lie algebra
has this type. If there is a “−” in the Table 1 at the intersection of the row, corresponding
to the Lie algebra, and the column, corresponding to the type, then it means that this type of
the basis is impossible for given Lie algebra. For the case of Lie algebra A1 we give only the signs
of the triple (λ1, λ2, λ3) up to reorder and sign change.

Remark 2. We note that similar bases was also constructed by G. Calvaruso, L.A. Cordero
and P. E. Parker in [7,8].

3. The isotropy of Schouten–Weyl tensor

In the paper [2] the problem of existence of pseudo-Riemannian metrics, for which
the squared length of the Schouten–Weyl tensor is zero and some of the components of
the Schouten–Weyl tensor are not zero sumultaneously has been tasked. This problem has
been solved for the cases A1 and A4, and for nonunimodular three-dimensional Lie algebras.
This paper presents a solutions to the problem for the cases A2 and A3.
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Table 1
Three-dimensional unimodular Lie algebras

Lie algebra Restrictions on the structure constants
A1 A2 A3 A4

su(2) (+,+,+) − − −
sl(2,R) (+,+,−) λ1 6= 0, λ2 6= 0 λ 6= 0 λ3 6= 0
e(2) (+,+, 0) − − −

e(1, 1) (+,−, 0)
λ1 = 0, λ2 6= 0

or
λ1 6= 0, λ2 = 0

λ = 0 λ3 = 0

h (+, 0, 0) λ1 = 0, λ2 = 0 − −
R3 (0, 0, 0) − − −

Table 2
Three-dimensional unimodular metric Lie algebras A2 and A3 with the isotropic

Schouten–Weyl tensor

Lie algebra Restrictions on the structure constants Type of Lie algebra

A2
λ1 = 0, λ2 6= 0 e(1, 1)
λ1 = λ2 6= 0

sl(2,R)A3 λ 6= 0

Theorem 2. Let G be an unimodular three-dimensional Lie group with left-invariant Lorentzian
metric, Lie algebra A2 or A3 and isotropic Schouten–Weyl tensor. Then the Lie algebra
of group G is isomorphic to e(1, 1) or sl(2,R), and the restrictions on structural constants
are contained in the Table 2.

Proof. We consider the case A2. Let be {E1, E2, E3} a basis, which was listed in the Theorem 2.
Calculating the components of the Schouten–Weyl tensor with help of the previously presented
formulas, we see, that the non-trivial components of the Schouten–Weyl tensor have the form

SW132 = −λ31 + λ21λ2,

SW221 = SW331 = −1

2
λ21 − 2λ2λ1 + 4λ22,

SW231 = −1

2
λ21 − 2λ2λ1 + 4λ22 −

1

2
λ31 +

1

2
λ21λ2,

SW321 = −1

2
λ21 − 2λ2λ1 + 4λ22 +

1

2
λ31 −

1

2
λ21λ2,

(4)

and the squared length of the Schouten–Weyl tensor is equal to

‖SW‖2 = −3λ41(λ1 − λ2)2.

The formula shows that equality to the zero is achieved if: λ1 = 0 or λ1 = λ2.
Thus the Schouten–Weyl tensor is not trivial if and only if λ1 = 0, λ2 6= 0 or λ1 = λ2 6= 0.

Now we consider the case A3. Let be {E1, E2, E3} is a basis, which was listed in
the Theorem 2. As in the case of A2, we calculate the components of the Schouten–Weyl
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tensor

SW121 = −SW131 = SW232 = −SW332 =
3

2
λ2,

SW221 = −SW231 = −SW321 = SW331 = −6λ.
(5)

Thus the squared length of the Schouten–Weyl tensor is trivial for any value of the structure
constant λ, and the Schouten–Weyl tensor can be zero only if λ ≡ 0.

Remark 3. The case of Lie algebra A1 or A4 and case of non-unimodular Lie algebras
has been considered in [2].

4. Almost harmonicity of the Schouten–Weyl tensor

In this part we investigate the three-dimensional metric Lie groups with zero curl and
divergence of the Schouten–Weyl tensor.

Theorem 3. Let G be an unimodular three-dimensional Lie group with left-invariant Lorentzian
metric and Lie algebra A2 or A3. Then div1(SW ) ≡ 0. If moreover curl(SW ) = 0,
i.e. the Schouten–Weyl tensor is almost harmonic, then the Schouten–Weyl tensor is trivial
(so div2(SW ) = 0), and the Lie algebra of group G is contained in the Table 3.

Table 3
The three-dimensional unimodular metric Lie algebras A2 or A3 with trivial Schouten–Weyl

tensor

Lie algebra Restrictions on the structure constants Type of Lie algebra
A2 λ1 = λ2 = 0 h
A3 λ = 0 e(1, 1)

Proof. We consider the case of Lie algebra A2. Direct calculations show that div1(SW ) ≡ 0.
Further we assume that the Schouten–Weyl tensor is almost harmonic, i.e. curl(SW ) = 0,

so we have the system of equations:

−2λ2λ
2
1 − λ31 + 16λ22λ1 − 16λ32 = 0,(

λ21 + 4λ1λ2 − 8λ22
)

(λ1 − 2λ2) = 0,

−λ31 + 2λ2λ
2
1 + 8λ22λ1 + 3λ41 − 3λ2λ

3
1 = 0,

−7λ31 + 2λ2λ
2
1 + 8λ22λ1 = 0,

7λ31 − 2λ2λ
2
1 − 3λ41 + 3λ2λ

3
1 − 8λ22λ1 = 0.

(6)

Solving the system of equations (6) for the structure constants of the Lie algebra A2, we obtain
the solution λ1 = λ2 = 0. It is immediately verified that for this solution the Schouten–Weyl
tensor (4) is trivial.

Next we consider the case of Lie algebra A3. Direct calculations show that in this case we
have div1(SW ) ≡ 0.

Let the Schouten–Weyl tensor satisfies the condition curl(SW ) = 0. In this case, we obtain
the following system of equations:

λ = 0, λ2 = 0, λ3 = 0,

16λ+ λ3 = 0, 16λ2 − λ3 = 0, λ3 − 6λ = 0, λ3 + 6λ = 0.
(7)
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Solving the system of equations (7) for the structure constants of the Lie algebra A3, we obtain
the solution λ = 0. It is easy to verify, that for this solution the Schouten–Weyl tensor (5)
is trivial.

Remark 4. The case of Lie algebra A1 or A4 and case of non-unimodular Lie algebras has been
considered in [9].

5. The harmonicity of contraction of the Schouten–Weyl tensor

In this section we consider the question about the harmonicity of contraction
of the Schouten–Weyl tensor, which was defined by (2), through the Schouten–Weyl tensor
SW and some vector field V .

Theorem 4. Let G be an unimodular three-dimensional Lie group with left-invariant Lorentzian
metric, Lie algebra A2 or A3 and w is a harmonic tensor. Then the restrictions on structure
constants of the Lie algebra of group G and components of vector field {V k} are contained
in the Table 4.

Proof. First we consider the case of Lie algebraA2. Using (2), we find the nontrivial components
of the tensor wij

w12 =
1

2
V 2λ21 − 2V 2λ1 − 6V 2 − 2V 2λ22 + 2V 3 + 2V 3λ22 − 2V 3λ2λ1+

+
1

2
V 3λ2λ

2
1 +

1

2
V 3λ31 +

1

2
V 3λ21 − 6V 3λ2 − 2V 3λ32,

w13 = −2V 2λ22 − 2V 2λ2λ1 +
1

2
V 2λ2λ

2
1 −

1

2
V 2λ31 −

1

2
V 2λ21 − 6V 2λ2−

− 2V 2λ32 − 2V 2 − 1

2
V 3λ21 + 2V 3λ1 + 6V 3 + 2V 3λ22,

w23 = −V 1(λ31 + λ21 + 4λ22 + 4).

Computing the curl and divergence of the tensor wij, we see that the equalities curl(w) ≡ 0
and div(w) ≡ 0 are equivalent to the system of equations

−V 1(λ31 + λ21 + 4λ22 + 4)λ1 = 0,

4V 2λ2λ1 + V 2λ2λ
3
1 − V 2λ22λ

2
1 + 4V 2λ22λ1 + 16V 2 − 16V 3 + 20V 2λ22 − 8V 3λ22−

−V 3λ31 + V 2λ31 + 8V 2λ32 + 4V 2λ42 − 4V 3λ1 + 16V 2λ2 + 4V 2λ1 = 0,

−4V 3λ2λ1 + 4V 3λ22λ1 − V 3λ22λ
2
1 − V 3λ2λ

3
1 − 16V 2 + 16V 3 − 8V 2λ22 + 20V 3λ22+

+V 3λ31 − 8V 3λ32 − V 2λ31 + 4V 3λ42 − 16V 3λ2 + 4V 3λ1 − 4V 2λ1 = 0.

(8)

Solving the system of equations (8) for the structure constants of the Lie algebra and
the components of vector field {V k}, we define Lie algebras and the corresponding directions,
for which the tensor wij is harmonic. We obtain the following solutions:

1. V = (V 1, V 2, V 3), V i ∈ R, λ1 = −2, λ2 = 0;

2. V = (0, V 2, V 3), V 2, V 3 ∈ R \ {0}, λ1 = 1
6

(
F (V 2, V 3) + H(V 2,V 3)

F (V 2,V 3)
− (V 2 + V 3)2

)
,

λ2 = (V 3)2−(V 2)2

2V 2V 3 , V 2 6=
(
−7± 4

√
3 + 2

√
24 + 14

√
3
)
V 3, where

F (x, y) =

(
P (x, y) + 6

√
6 (x2 + y2) (x− y)4Q (x, y)

)1/3

,

P (x, y) = 53x6 − 150x5y + 507x4y2 − 308x3y3 + 507x2y4 − 150xy5 + 53y6,

Q (x, y) = 13x6 − 22x5y + 163x4y2 − 52x3y3 + 163x2y4 − 22xy5 + 13y6,

H (x, y) = x4 + 28x3y + 6x2y2 + 28xy3 + y4;
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Table 4
The three-dimensional unimodular metric Lie algebras A2 or A3 with harmonic contraction of

the Schouten–Weyl tensor

Restrictions on the
structure
constants

Type of
Lie algebra Vector field

Lie algebra A2

λ1 = −2, λ2 = 0 e(1, 1) V = (V 1, V 2, V 3), V i ∈ R is harmonic.

λi = Li(V
2, V 3)

sl(2,R)
or e(1, 1)

V = (0, V 2, V 3), V 2, V 3 ∈ R \ {0},
V 2 6=

(
−7± 4

√
3 + 2

√
24 + 14

√
3
)
V 3

is harmonic.
λ2 = 0, λ1 6= 0 e(1, 1) V = (0, V 2, V 2), V 2 ∈ R is harmonic.
λ1 = 0, λ2 6= 0 e(1, 1) V = (V 1, 0, 0), V 1 ∈ R

Lie algebra A3

λ = 0 e(1, 1) V = (0,−V 3, V 3), V 3 ∈ R is harmonic.

λ = L3 sl(2,R) V = (V 1, V 2, V 3), V 3 ∈ R,
V 1 = f(λ)V 3, V 2 = h(λ)V 3

where

L1(x, y) =
1

6

(
F (x, y) +

H (x, y)

F (x, y)
− (x+ y)

2

)
, L2 (x, y) =

y2 − x2

2xy
,

F (x, y) =

(
P (x, y) + 6

√
6 (x2 + y2) (x− y)4Q (x, y)

)1/3

,

P (x, y) = 53x6 − 150x5y + 507x4y2 − 308x3y3 + 507x2y4 − 150xy5 + 53y6,

Q (x, y) = 13x6 − 22x5y + 163x4y2 − 52x3y3 + 163x2y4 − 22xy5 + 13y6,

H (x, y) = x4 + 28x3y + 6x2y2 + 28xy3 + y4,

L3 = ±1

4

√√√√√6

(
136643 + 512A+

104960

A
+

85821417

B

)
− 483−B ≈ ±89.072,

A =
(
3763 + 6

√
154029

)1/3
≈ 18.289,

B =
1

A

√
409929A− 3072A2 − 629760 ≈ 565.076,

f (λ) =
1

8192
λ
(
440λ6 + 9047λ4 − 47248λ2 + 30400

)
,

h (λ) = − 1

2048

(
88λ6 + 2219λ4 + 4322λ2 − 2112

)
.

3. V = (0, V 2, V 2), V 2 ∈ R, λ1 ∈ R \ {0}, λ2 = 0;

4. V = (V 1, 0, 0), λ1 = 0, λ2 ∈ R \ {0}, V 1 ∈ R.

Let {V k} be harmonic. Computing the curl and divergence of the vector field {V k}, we see
that the equalities curl(V ) ≡ 0 and div(V ) ≡ 0 are equivalent to the equation:

V 1(2 + λ1) = 0. (9)

Solving the system of equations (8) and (9), we obtain, that the directions 1–3 are harmonic
and the direction 4 isn’t harmonic.
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Now we consider the case of Lie algebra A3. Using (2), we find the nontrivial components
of the tensor wij

w12 = −11

2
V 1λ2 + 4V 1 + 2V 2λ− λ3V 3 + 2V 3λ,

w13 =
3

2
V 1λ2 − 4V 1 − 2λ3V 2 + 6V 2λ− 2V 3λ,

w23 = −λ3V 1 + 4V 1λ+
3

2
V 2λ2 − 4V 2 − 4V 3 +

11

2
V 3λ2.

Computing the curl and divergence of the tensor wij, we see that the equalities curl(w) ≡ 0
and div(w) ≡ 0 are equivalent to the system of equations:

−16V 1 + 22V 1λ2 − λ3V 2 − 16V 3λ− 2λ4V 1 + 13λ3V 3 = 0,

−λ3V 1 + 4λ4V 2 − 15V 2λ2 − 7V 3λ2 + 8V 2 + 8V 3 = 0,

−16V 1λ+ 13λ3V 1 − 7V 2λ2 + 2λ4V 3 − 15V 3λ2 + 8V 2 + 8V 3 = 0.

(10)

Solving this system of equations for the structure constants of the Lie algebra and
the components of vector field {V k}, we obtain the following solutions:

1. V = (0,−V 3, V 3), V 3 ∈ R, λ = 0;

2. V = (V 1, V 2, V 3), V 3 6= 0 and

V 1 =
1

8192
V 3λ(440λ6 + 9047λ4 − 47248λ2 + 30400),

V 2 = − 1

2048
V 3(88λ6 + 2219λ4 + 4322λ2 − 2112),

λ = ±1

4

√√√√√6

(
136643 + 512A+

104960

A
+

85821417

B

)
− 483−B ≈ ±89.072;

A = (3763 + 6
√
154029)1/3 ≈ 18.289,

B =
1

A

√
409929A− 3072A2 − 629760 ≈ 565.076.

Let {V k} be harmonic. Computing the curl and divergence of the vector field {V k}, we see
that the equalities curl(V ) ≡ 0 and div(V ) ≡ 0 are equivalent to the equation:

− λV 1 + 2V 2 + 2V 3 = 0. (11)

Solving the system of equations (10) and (11), we obtain, that the direction 1 is harmonic and
the direction 2 isn’t harmonic.

Remark 5. A similar theorems for the contraction of the Schouren-Weyl tensor in the cases
A1 and A4 and also in the case of non-unimodular Lie algebras has been proved in [9].
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