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Abstract

This paper is devoted to solving the problem of studying locally homogeneous (pseudo)Riemannian
manifolds with metric connection with vectorial torsion, the curvature tensor of which is zero.
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1. Preliminaries

Let (M, g) be a (pseudo)Riemannian manifold. Define a metric connection ∇ on M by the
formula

∇XY = ∇g
XY + g (X, Y )V − g (V, Y )X,

where V is a fixed vector field, X, Y are arbitrary vector fields, ∇g is the Levi-Civita connection
on M . This connection is called a metric connection with vectorial torsion [1].

Let R be a curvature tensor of a metric connection ∇. It is determined by the equality

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z.

As known, the following conditions are hold

1)R(X, Y )Z = −R(Y,X)Z (for any linear connection);
2)R(X, Y, Z, T ) = −R(X, Y, T, Z) (for any metric connection).

Also we have

Theorem 1. [2] A necessary and sufficient condition that the Ricci tensor of the metric
connection ∇ to be symmetric is that the (0,4) curvature tensor R of the connection ∇ satisfies
one of the following conditions:

1. R(X, Y, Z, U) = R(Z,U,X, Y ),

2. R(X, Y, Z, U) +R(Y, Z,X, U) +R(Z,X, Y, U) = 0,

where R(X, Y, Z, V ) = g(R(X, Y )Z,U).

Let M = G/H be a locally homogeneous (pseudo)Riemannian manifold; g be a Lie algebra
of isometry group G, h be a Lie algebra of isotropy subgroup H, m be a complement to h in g.
Denote dim h = h and dimm = m. One can fix a basis {e1, . . . , eh, u1, u2, . . . , um} of algebra g,
where {ei} and {ui} are bases of h and m respectively. Denote

[ui, uj]m = ckijuk, [ui, uj]h = Ck
ijek, [ei, uj]m = c̄kijuk,
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where ckij, Ck
ij and c̄kij are arrays of appropriate sizes. Components of the Levi-Civita connection

∇g can be expressed in terms of structural constants and components of the metric tensor:

(Γg)kij =
1

2

(
ckij + gskclsjgil + gskclsigjl

)
,
(
Γ̄g
)k
ij

=
1

2
c̄kij −

1

2
gskc̄lisgjl,

where ∇g
ui
uj = (Γg)kij uk, ∇g

ei
uj =

(
Γ̄g
)k
ij
uk; {gij} is inverse of {gij} .

Let invariant vector V ∈ m, then components of metric connection ∇ with vectorial torsion
are defined by:

Γkij = (Γg)kij + gijV
k − V sgsjδ

k
i , Γ̄kij =

(
Γ̄g
)k
ij
,

where ∇uiuj = Γkijuk, ∇eiuj = Γ̄kijuk.
Components of the curvature tensor R can be calculated via formula:

Rijks =
(
ΓlikΓ

p
jl − ΓljkΓ

p
il + clijΓ

p
lk + C l

ijΓ̄
p
lk

)
gps

or

Rijks =
1

4
(crik + gtrctki + gtrctik + 2gikV

r − 2δri Vk) · (cjrs + csrj + csjr + 2gjrVs − 2gjsVr)−

−1

4
(crjk + gtrctkj + gtrctjk + 2gjkV

r − 2δrjVk) · (cirs + csri + csir + 2girVs − 2gisVr)−

−1

2
crij(crks + cskr + csrk + 2grkVs − 2grsVk) +

1

2
C l
ij(c̄lks − c̄lsk),

where Vk = V sgsk, cijk = csijgsk, c̄ijk = c̄sijgsk.

Theorem 2. [3, 4] Let (M, g) is a 3-dimensional locally homogeneous (pseudo)Riemannian
manifold. Then either (M, g) is locally symmetric (w.r.t. the Levi-Civita connection) or (M, g)
is locally isometric to a 3-dimensional Lie group with left-invariant (pseudo)Riemannian metric.

Theorem 3. [3, 4] Three dimensional locally symmetric (pseudo)Riemannian manifold is
locally isometric to one of the following:

• (pseudo)Riemann space form R3, S3 or H3 (with zero, positive or negative sectional
curvature, respectively), or

• direct product S2 × R or H2 × R, or
• Walker manifold (i.e. manifold with parallel isotropic distribution) with Lorentzian
metric g, which amdits a local coordinate system (u1, u2, u3) such that the metric tensor

has the form g =

0 0 1
0 ε 0
1 0 u2

2α + u2β(u3) + ξ(u3)

 , where ε = ±1; α ∈ R; β and ξ are

arbitrary smooth functions.

A classification of three-dimensional locally homogeneous (pseudo)Riemannian manifolds is
obtained in the work [5]. Next we will use the numbering from this work. In particular, from
this classification follows

Theorem 4. [5] Let M = G/H is a 3-dimensional locally homogeneous manifold
with locally symmetric invariant (pseudo)Riemannian metric. Then there exists a basis
{e1, . . . , eh, u1, u2, u3} in Lie algebra of G, where {ei} and {ui} are bases of h and m respectively,
such that the Lee brackets have the form shown in the following list.

1. Space forms
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3.5.1 (R3 with Riemannian metric)

[e1, e2] = e3, [e1, e3] = −e2, [e1, u1] = −u3, [e1, u3] = u1,

[e2, u1] = −u2, [e2, u2] = u1, [e3, u2] = −u3, [e3, u3] = u2,

[e2, e3] = e1.

3.4.1 (R3 with Loretzian metric)

[e1, e2] = e2, [e1, e3] = −e3, [e1, u1] = u1, [e1, u3] = −u3,

[e2, u2] = u1, [e2, u3] = u2, [e3, u1] = u2, [e3, u2] = u3,

[e2, e3] = e1.

3.5.2 (S3 with Riemannian metric)

[e1, e2] = e3, [e1, e3] = −e2, [e1, u1] = −u3, [e1, u3] = u1,

[e2, e3] = e1, [e2, u1] = −u2, [e2, u2] = u1, [e3, u2] = −u3,

[e3, u3] = u2, [u1, u2] = e2, [u1, u3] = e1, [u2, u3] = e3.

3.4.2 (S3 with Loretzian metric)

[e1, e2] = e2, [e1, e3] = −e3, [e1, u1] = u1, [e1, u3] = −u3,

[e2, e3] = e1, [e2, u2] = u1, [e2, u3] = u2, [e3, u1] = u2,

[e3, u2] = u3, [u1, u2] = e2, [u1, u3] = −e1, [u2, u3] = −e3.

3.5.3 (H3 with Riemannian metric)

[e1, e2] = e3, [e1, e3] = −e2, [e1, u1] = −u3, [e1, u3] = u1,

[e2, e3] = e1, [e2, u1] = −u2, [e2, u2] = u1, [e3, u2] = −u3,

[e3, u3] = u2, [u1, u2] = −e2, [u1, u3] = −e1, [u2, u3] = −e3.

3.4.3 (H3 with Loretzian metric)

[e1, e2] = e2, [e1, e3] = −e3, [e1, u1] = u1, [e1, u3] = −u3,

[e2, e3] = e1, [e2, u2] = u1, [e2, u3] = u2, [e3, u1] = u2,

[e3, u2] = u3, [u1, u2] = −e2, [u1, u3] = e1, [u2, u3] = e3.

2. Direct products

1.3.5 (S2 × R)

[e1, u1] = −u2, [e1, u2] = u1, [u1, u2] = e1.

1.3.6 (H2 × R)

[e1, u1] = −u2, [e1, u2] = u1, [u1, u2] = −e1.

3. Walker manifolds

1.1.1 [e1, u1] = u1, [e1, u2] = −u2.

1.1.5 [e1, u1] = u1, [e1, u2] = −u2, [u1, u2] = e1.

1.8.1 [e1, u2] = u1, [e1, u3] = u2.

1.8.4 [e1, u2] = u1, [e1, u3] = u2, [u2, u3] = e1.

1.8.5 [e1, u2] = u1, [e1, u3] = u2, [u2, u3] = −e1.

2.21.1 [e1, e2] = e2, [e1, u1] = u1, [e1, u3] = −u3,
[e2, u2] = u1, [e2, u3] = u2.
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Table 1
Invariant metric tensors of three-dimensional locally symmetric (pseudo)Riemannian

manifolds

Case Invariant metric tensor Restrictions

1.1.1
1.1.5

 0 α12 0
α12 0 0
0 0 α33

 α12α33 6= 0

1.3.5
1.3.6

α22 0 0
0 α22 0
0 0 α33

 α22α33 6= 0

1.8.1
1.8.4
1.8.5

 0 0 −α22

0 α22 0
−α22 0 α33

 α22 6= 0

2.21.1
3.4.1
3.4.2
3.4.3

 0 0 −α22

0 α22 0
−α22 0 0

 α22 6= 0

3.5.1
3.5.2
3.5.3

α33 0 0
0 α33 0
0 0 α33

 α33 6= 0

The invariance condition of the metric tensor g has the form:

(ψi)
t · g + g · ψi = 0, i = 1, . . . , h,

where ψi is a isotropy representation, which is defined via formula ψi(uj) = [ei, uj]; (ψi)
t is a

transposed matrix. The form of the invariant metric tensor for each case of the theorem given
in the following table.

A classification of three-dimensional Riemannian Lie groups was obtained by J. Milnor in [6].
The classification of three-dimensional Lorentzian Lie groups was obtained in [4, 7, 8].

Theorem 5. [6] Let G is a 3-dimensional Lie group wuth left-invariant Riemannian metric.
Then

• if G is a unimodular, then there exists an orthonormal basis {e1, e2, e3} in Lie algebra U
of group G such that

[e1, e2] = α3e3, [e1, e3] = −α2e2, [e2, e3] = α1e1.

• if G is a nonunimodular, then there exists an orthonormal basis {e1, e2, e3} in Lie algebra
NU of group G such that

[e1, e2] = (2− α2)e2 + α3e3, [e1, e3] = α1e2 + α2e3,

Theorem 6. [4, 7] Let G is a 3-dimensional Lie group wuth left-invariant Lorentzian metric.
Then
1) if G is a unimodular, then there exists an pseudo-orthonormal basis {e1, e2, e3} in Lie algebra
of group G such that the metric Lie algebra is contained in the following list
A1: [e1, e2] = α3e3, [e1, e3] = −α2e2, [e2, e3] = α1e1 with e1 timelike;

A2: [e1, e2] = (1− α2) e3 − e2, [e1, e3] = e3 − (1 + α2) e2, [e2, e3] = α1e1 with e3 timelike;

A3: [e1, e2] = e1 − α1e3, [e1, e3] = −α1e2 − e1, [e2, e3] = α1e1 + e2 + e3 with e3 timelike;



Balashchenko V.V., Khromova O.P., Klepikova S.V. 9

A4: [e1, e2] = α3e2, [e1, e3] = −α2e1 − α1e2, [e2, e3] = −α1e1 + α2e2 with e1 timelike and α2 6= 0.

2) if G is a nonunimodular, then there exists an pseudo-orthonormal basis {e1, e2, e3} in Lie
algebra of group G such that the metric Lie algebra is contained in the following list
A: [e1, e3] = α1 sinα3 e1 − α2 cosα3 e2, [e2, e3] = α1 cosα3 e1 + α2 sinα3 e2 with e3 timelike and

sinα3 6= 0, α1 + α2 6= 0, α1 > 0, α2 > 0;

B: [e1, e3] = α3e1 − α4e2, [e2, e3] = α1e1 + α2e2 with nonzero 〈e2, e2〉 = −〈e1, e3〉 = 1 and α2 6= α3;

C1: [e1, e3] = α3e1 + α1e2, [e2, e3] = α1e1 + α2e2 with e2 timelike and α2 6= α3;

C2: [e1, e3] = α2e1 − α3e2, [e2, e3] = α1e1 + α2e2 with e2 timelike and α2 6= 0, α1 + α3 6= 0.

2. Results

In these notations, the following holds.

Theorem 7. Let (G/H, g) be a 3-dimensional locally symmetric (pseudo)Riemannian manifold
with metric connection with invariant vectorial torsion. If the curvature tensor is zero, then

• in cases 1.1.1, 1.8.1, 2.21.1, 3.4.1, 3.5.1 vector V is trivial;

• in case 1.1.5 vector V has coordinates
(

0, 0,± 1√
−α12α33

)
;

• in case 1.3.5 vector V has coordinates
(

0, 0,± 1√
−α22α33

)
and the metric tensor must be

Lorentzian;

• in case 1.3.6 vector V has coordinates
(

0, 0,± 1√
α22α33

)
and the metric tensor must be

Riemannian;

• in case 1.8.4 vector V has coordinates
(
± 1
α22
, 0, 0

)
.

In cases 1.8.5, 3.4.2, 3.4.3, 3.5.2, 3.5.3 curvature tensor cannot be zero.

Theorem 8. Let (G, g) be a 3-dimensional metric Lie group with metric connection with
invariant vectorial torsion. If the curvature tensor is zero, then
in case U : V = 0 and

• or α1 = 0, α2 = α3;

• or α2 = 0, α1 = α3;

• or α3 = 0, α1 = α2;

in case NU : α2 = 1±
√

1− α2
1, α1 = α3 and

• or V = (−2, 0, 0);

• or V =

(
0,−

(
1±
√

1−α2
1

)
V 3

α1
, V 3

)
,V 3 =

√
±2
√

1− α2
1 − 2

in case A1: V = 0 and

• or α1 = 0, α2 = α3;

• or α2 = 0, α1 = −α3;

• or α3 = 0, α1 = −α2;

in case A2: α1 = 0, α2 = 0 and V = 0;
in case A3: α1 = 0 and

• or V = (0, 1, 1);
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• or V = (0,−2,−2);

in case A4 curvature tensor cannot be zero; in case A:
• or α1 = 0, α3 = ±π/2, V = (±α2, 0, 0);

• or α1 = 0, α3 = ±π/2, V = (0, 0,∓α2);

• or α2 = 0, α3 = ±π/2, V = (0,±α1, 0);

• or α2 = 0, α3 = ±π/2, V = (0, 0,∓α1);

• or α1 = α2, V = (0, 0,−α1 sin(α3));

in case B: α4 = 0 and

• or V = (α2 − α3, 0, 0);

• or V = (−α2, 0, 0);

in case C1: α1 = 0 and

• or α2 = 0, V = (0, 0, α3);

• or α3 = 0, V = (0, 0, α2);

• or α2 = 0, V = (0,±α3, 0);

in case C2 curvature tensor cannot be zero.

Remark 1. Thus, in dimension 3, all metric connections with vector torsion, for which locally
homogeneous (pseudo) Riemannian manifolds are flat, are defined.
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