О перспективах методов дробления параметров в комплексных интервальных арифметиках

Дронов В.С.

Алтайский государственный университет, г. Барнаул planeswalker@rambler.ru

Аннотация

Рассматриваются перспективы применения методов дробления параметров в различных комплексных интервальных арифметиках. Сравниваются прямоугольная, секторная и круговая арифметики в смысле удобства базового подхода к комплексному интервалу и соответствия их операций требованиям организаций методов дробления параметров.

Ключевые слова: интервальный анализ, комплексная интервальная арифметика, методы дробления параметров

1. Мотивации и определения

Основной идеей интервального анализа является рассмотрение промежутков данных, содержащих неопределённость, как отдельных объектов. Ничто не ограничивает эту идею только вещественной природой данных (хотя впервые применена она была именно к ним, и наибольшее развитие получила именно в действительном случае). Так, в [1] приводятся примеры, где комплексные интервальные задачи естественным образом возникают в физике твёрдого тела и термодинамике, в [2] и [3] — в робототехнике; существуют также многочисленные внутриматематические мотивации для постановки подобных задач, вроде вопросов устойчивости решений и так далее. Тем не менее, отсутствие порядка на поле комплексных чисел приводит к тому, что интервал в комплексном случае не вводится столь же естественно и безальтернативно, как «брус» в случае действительных данных.

Прямой аналогией с действительным случаем является прямоугольная комплексная арифметика IC_{rec} , где в качестве базового объекта рассматривается прямоугольник комплексной плоскости, а неопределённость естественно рассматривать как независимую неопределённость в мнимой и действительной части комплексного числа:

$$[\mathbf{a}, \mathbf{b}] = \{x \in \mathbb{C} : Re(x) \in \mathbf{a}, Im(x) \in \mathbf{b}\}$$

(Здесь и далее жирным шрифтом выделяются интервалы, то есть $[\mathbf{a}, \mathbf{b}]$ – набор двух действительных интервалов). Тем не менее, если рассматривать неопределённость как удалённость на комплексной плоскости от некоторой точки, то естественной становится круговая арифметика IC_{circ} с базовым объектом

$$\langle c, r \rangle = \{ x \in \mathbb{C} : |c - x| < r \}$$

В круговой арифметике, в отличие от прямоугольной, неопределённость задаётся только одним параметром — радиусом — вместо двух, что положительно сказывается на сложности расчётов. Другой естественной постановкой является введение аналога прямоугольного интервала через полярную форму комплексного числа. Базовым объектом в арифметике IC_{sec} является секторный интервал:

$$\langle \mathbf{r}, [\alpha_1, \alpha_2] \rangle = \{ x \in \mathbb{C} : x = re^{i\alpha}, r \in \mathbf{r}, \alpha \in [\alpha_1, \alpha_2] \}$$

Конкретные правила по проведению арифметических операций над объектами в этих арифметиках можно посмотреть, например, в [4] и [1].

Арифметики IR_{rec} , IR_{sec} и IR_{circ} обладают существенно различными алгебраическими свойствами (что можно заметить уже по разному количеству интервальных параметров в базовых объектах). Точно так же, как прямой перенос действительных методов на интервальный случай обычно оказывается не самым продуктивным подходом, прямой перенос методов работы с действительными интервалами обычно оказывается не лучшим при переносе на комплексный случай. Основной проблемой всех комплексных интервальных арифметик является взаимосвязь действительной и комплексной части, из-за которой интервалы-результаты арифметических операций обычно не совпадают с точными множествами представителей, а представляют собой оболочки этих множеств (достаточно сложной структуры уже в случае простых арифметических действий), имеющие форму интервалов нужного типа. Так, например, в IC_{circ} точное множество представителей произведения двух интервалов представляет собой совокупность двух овалов Декарта, как показано в [5]:

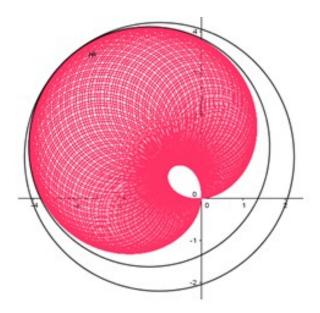


Рисунок 1. Точное множество представителей произведения для круговых интервалов <1,1> и <i-1,0,9> и его оболочки. Больший круг соответствует IC_{circ} , меньший – точной интервальной арифметике Гарганти (см. ниже)

Классическая интервальная арифметика IC_{circ} не обеспечивает минимальности оболочек по включению. Существуют другие подходы к операциям над круговыми интервалами, описанные в [4]. Интервальная круговая арифметика Н.Краера (так называемая минимальная круговая арифметика) обеспечивает минимальность оболочки, но ценой ухудшения алгебраических свойств: ни одна из интервальных арифметик выше не обладает дистрибутивностью, но IC_{circ} обладает субдистрибутивностью, которую минимальная арифметика утрачивает. Второй круг на рисунке 1 — оболочка в так называемой точной арифметике И. Гарганти, сохраняющей свойство субдистрибутивности при более узких интервалах, чем в случае IC_{circ} .

Все три приведённых выше подхода к комплексному интервалу не свободны от проблемы с оболочками. В IC_{rec} операция взятия оболочки необходима в случае произведения. В IC_{sec} множество представителей произведения интервалов – интервал, но поэлементная сумма интервалов требует оболочки. Комбинирование комплексных арифметик, являющееся довольно давней идеей (см., например, [6]) помимо усиления эффекта обёртывания порождает добавочные проблемы с монотонностью по включению (см. [7]).

2. Характеризация Оеттли-Прагера и PPS-методы

Понятие множества решения для системы интервальных уравнений определяется не столь однозначно, как для точечного случая. Предположим, что у нас есть интервальная матрица ${\bf A}$ и интервальный вектор правых частей ${\bf b}$; тогда под решением системы ${\bf A}x={\bf b}$ можно понимать как множество $\Xi_{uni}({\bf A},{\bf b})$ таких x, что при каком-то значении из ${\bf A}$ и ${\bf b}$ мы получаем верное равенство Ax=b (объединённое множество решений), так и множество таких x, что при любом значении правой части из ${\bf b}$ найдётся какая-то матрица A, что Ax=b, множество таких x, что при любом значении из ${\bf A}$ для какого-то значения из ${\bf b}$ мы получаем верное равенство, и так далее. В тексте ниже объединённое множество решений для краткости будет называться просто множеством решений.

Задача внешнего оценивания для множества решений системы линейных интервальных уравнений $\mathbf{A}x = \mathbf{b}$ сводится к нахождению интервального вектора из IC^n (где n – размерность задачи), имеющего по возможности меньшую ширину и включающего $\Xi_{uni}(\mathbf{A}, \mathbf{b})$

Один из подходов к получению внешней оценки воплощается в так называемых PPS-методах (от partitioning parameter set) или методах дробления параметров. Основная идея этих методов (детальное описание подхода можно посмотреть в [8]) – организация итерационного процесса через дробление области и использование оптимизационных методов (нахождение нижних и верхних границ), опираясь на теорему Бека-Никеля:

Теорема 1 (Бек, Никель). Точные покоординатные оценки точек из $\Xi_{uni}(A, b)$ для квадратной неособенной матрицы A, то есть экстремальные значения этого множества, достигаются решениями крайних точечных систем уравнений Ax = b, т.е. таких, что матрица A и вектор b образованы элементами c границ интервалов A и b.

Теорема Бека-Никеля для целей PPS-методов в действительных случаях может быть усилена использованием теоремы Рона об экстремальных значениях ([9]) через использование характеризации Оеттли-Прагера для объединённого множества решений. Введём операторы mid и rad в IR, берущие, соответственно, среднюю точку интервала и его радиус (половину ширины), в случае размерности больше 1 применяемые покомпонентно. Справедлива

Теорема 2 (Оеттли, Прагер). Точка $x \in R^n$ принадлежит $\Xi_{uni}(\boldsymbol{A}, \boldsymbol{b})$ тогда и только тогда, когда $|(mid\boldsymbol{A})x - mid\boldsymbol{b}| \leq rad\boldsymbol{A}|x| + rad\boldsymbol{b}$.

На основе характеризации Оеттли-Прагера и теоремы Рона об экстремальных значениях, сокращающей перебор и гарантирующей совпадение выпуклых оболочек точного множества решений и ограниченного набора граничных точек в действительном случае возможна организация PPS-метода на основе любого метода получения внешней оценки множества решений интервальной системы (метода Кравчика, интервального метода Гаусса, интервального метода Гаусса, интервального метода Саусса, интервального метода Саусса.

3. Обобщения на комплексный случай

Как видно, двумя основными требованиями к прямому переносу PPS-методов является выполнение для вариантов IC^n аналога теоремы Бека-Никеля и выполнение для них характеризации Оеттли-Прагера. Также, естественно, желательно наличие работоспособных методов получения внешних оценок для множества решений системы (это может вызывать трудности при попытке прямого переноса их с действительного случая; примеры возникающих проблем для IC_{circ} , см. например в [10]).

Доказательство теоремы Бека-Никеля ([11]) для IC^n может быть произведено на основе метода Крамера решения систем линейных уравнений (как известно, работающего

и в комплексном случае) с использованием монотонности линейного выражения, которое верно для любой из трёх рассматриваемых арифметик. Перенос на комплексный случай более полезен для IC_{rec} и IC_{sec} , чем для IC_{circ} из-за более явных граничных точек в этом случае, но в целом совершается одинаково.

Наиболее естественной характеризация Оеттли-Прагера выглядит для случая IC_{circ} , так как эта арифметика является «одноинтервальной» в смысле базового объекта, и для кругов понятным образом вводятся операторы mid и rad. Расплатой за это служит наименее естественное дробление для круговых интервалов.

Предложение 1. Для круговых интервалов выполняется прямой аналог характеризации Оеттли-Прагера.

Доказательство. Необходимым и достаточным условием включения кругового интервала $\langle c,r \rangle$ в круговой интервал $\langle d,R \rangle$ является выполнение условия $|d-c| \leq R-r$; в случае вектора из IC^n_{circ} оно должно выполняться покомпонентно.

 $\Xi_{uni}(\mathbf{A}, \mathbf{b}) = \{x \in \mathbb{C}^n : \exists A \in \mathbf{A}, \exists b \in \mathbf{b}, Ax = b\}$, последнее равенство эквивалентно условию Ax - b = 0, т.е. $0 \in \mathbf{A}x - \mathbf{b}$. Рассматривая ноль как вырожденный интервал $\langle 0, 0 \rangle$ и применяя условие включения, получаем требуемый аналог: $|mid(\mathbf{A}x - \mathbf{b}) - 0| \leq rad(\mathbf{A}x - \mathbf{b}) - 0 \Leftrightarrow |mid(\mathbf{A})x - mid(\mathbf{b})| \leq rad(\mathbf{A})x + rad(\mathbf{b})$

Аналогичный прямой геометрический перенос характеризации Оеттли-Прагера в IC_{rec} и IC_{sec} невозможен, однако условие включения интервалов в этом случае может быть выписано в виде покомпонентых условий для действительной и мнимой части. (Соответствующие операторы обозначим mid_{Re} , mid_{Im} , rad_{Re} и rad_{Im} для IC_{rec} и mid_{Re} и mid_{α} , rad_{Re} и rad_{α} для IC_{sec}). В этом случае условия включения превращаются в пары условий. Альтернативой может быть использование геометрических свойств интервалов IC_{rec} и IC_{sec} с получением единого условия (это возможно за счёт того, что геометрически ситуация в IC_{sec} облегчается пересечением сторон секторов в одной точке, а в IC_{rec} стороны прямоугольников параллельны. Тем не менее, условия включения тут заметно менее удобны. Например, для секторных интервалов получаем:

$$\langle \mathbf{a}, [\alpha_1, \alpha_2] \rangle \subset \langle \mathbf{b}, [\beta_1, \beta_2] \rangle \Leftrightarrow |mid_R(\mathbf{b}) - mid_R(\mathbf{a})| + 2\pi \cdot |mid_R(\mathbf{b}) - mid_R(\mathbf{a})|$$

$$\cdot (rad_{\alpha}([\beta_1, \beta_2]) - rad_{\alpha}([\alpha_1, \alpha_2])) < rad_{\alpha}([\beta_1, \beta_2]) + 2\pi \cdot rad_R(\mathbf{b}) \cdot (mid_R(\mathbf{b}) - rad_R(\mathbf{b})),$$

что, как видно, ощутимо сложнее условия для круговых интервалов). Тем не менее, польза от покомпонентных условий мала, так как справедливо

Предложение 2. Для IC_{rec} невозможно записать аналог характеризации Оеттли-Прагера в виде покомпонентных условий на действительную и мнимую часть.

Доказательство. Выражение для $\Xi_{uni}(\mathbf{A}, \mathbf{b})$ в теоретико-множественном виде не зависит от вида интервала, потому условие $0 \in \mathbf{A}x - \mathbf{b}$ справедливо и для других интервальных арифметик. Тем не менее, в $IC_{rec} \ mid_{Re}(\mathbf{A}x) \neq mid_{Re}(\mathbf{A}) \cdot Re(x)$ в силу свойств комплексных операций. Более того, $mid_{Re}(\mathbf{A}x)$ заведомо зависит от $mid_{Im}(\mathbf{A}x)$.

Для IC_{sec} ситуация более удобна за счёт свойств умножения в секторной арифметике. В этом случае $mid_R(\mathbf{A}x) = mid_R(\mathbf{A})mid_R(x)$, однако $rad_R(\mathbf{A}x - \mathbf{b}) \neq rad_R(\mathbf{A})|x| + rad_R(\mathbf{b})$. Учитывая, что в приведённом выше условии включения rad_R от большего интервала (в наших обозначениях – \mathbf{b}) встречается только в правой части, возможна оценка, однако в этом случае легко проверяется только достаточность включения, но не необходимость.

Таким образом, несмотря на естественную простоту переноса характеризаций IC_{circ} , наиболее перспективной для методов дробления параметров из трёх рассмотренных неожиданно оказывается IC_{sec} , сочетающая как явные граничные точки для теорем Бека-Никеля и Рона, так и возможность переноса характеризации Оеттли-Прагера, пусть и в ограниченном виде, без существенного увеличения вычислительной сложности. В этом смысле IC_{rec} , хотя и лучше развитая, оказывается менее удачной. Можно считать этот факт пополняющим копилку иллюстраций к тому, что прямой перенос интервальных методов без адаптации на новую область обычно проигрывает в эффективности интеральным методам, изначально ориентированным на соответствующую область.

Список литературы

- 1. Candau Y., Raissi T., Ramdani N., Ibos L. Complex interval arithmetic using polar form // Reliable Computing. -2006. no. 1. P. 1–20.
- 2. Farouki R., Hass J. Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions // Journal of Computational and Applied Mathematics. 2007. Vol. 209, no. 2. P. 246–266.
- 3. Жолен Л., Кифер М., Дидри О., Вальтер Э. Прикладной интервальный анализ. М., Ижевск : Институт компьютерных исследований, 2007.-468 с.
- 4. Petkovic M., Petkovic L. Complex interval arithmetic and its applications // Mathematical Research, Vol. 105. Berlin: VILEY-VCH, 1998. 133 p.
- 5. Дронов В.С., Кузнецов Н.А. Об эффекте обёртывания для круговых интервалов // Ломоносовские чтения на Алтае: фундаментальные проблемы науки и образования. Сборник научных статей международной конференции (Барнаул, 14–17 ноября 2017 г.). Барнаул: Изд-во Алт. ун-та, 2017. С. 265–270.
- 6. Klatte R., Ulrich Ch. Complex Sector Arithmetic // Computing. 1980. no. 24. P. 139—148.
- 7. Дронов В.С. Исправленные секторно-круговые оценки Клатте-Ульриха, монотонные по включению // Ломоносовские чтения на Алтае: фундаментальные проблемы науки и техники. Сборник научных ст. международной конференции (Барнаул, 13–16 ноября 2018 г.). Барнаул: Изд-во Алт. ун-та, 2018. С. 300–302.
- 8. Людвин Д.Ю., Шарый С.П. Сравнительный анализ реализаций модификации Рона в методах дробления параметров // Вычислительные технологии. 2012. Т. 17, № 1. С. 69–89.
- 9. Фидлер М.and Недома Й., Рамик Я., Рон И., Циммерман К. Задачи линейной оптимизации с неточными данными / Пер. С.И. Кумков. Ижевск : РХД, 2008. 288 с.
- 10. Дронов В.С. О методе Гаусса-Зейделя в случае комплексных круговых интервалов // Известия Алтайского Государственрир университета. 2011. № 1(69). С. 13–16.
- 11. Beeck H. Uber die Struktur und Abschatzungen der Losungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten // Computing. 1972. Vol. 10. P. 231–244.