Математические методы оценки эффективности производственных систем: метод обволакивающей поверхности (DEA)

Торопова Е.А. Алтайский государственный университет, г. Барнаул evromix.22@mail.ru

Аннотация

В данной статье рассмотрена задача оценки технологической эффективности производственных систем и ее решение в рамках граничного подхода Дебрэ-Фаррелла. Рассмотрен метод обволакивающей поверхности (Data Envelopment Analysis), позволяющий получить количественные интегральные оценки технологической эффективности множества производственных объектов. Приводятся результаты программной реализации метода для основных моделей DEA в среде R.

Kлючевые слова: эффективность, производственные системы, граничный подход, Data Envelopment Analysis

1. Введение

Производство, как процесс, представляет собой преобразование ресурсов в продукт. Повышение эффективности управления такой системой связано с вопросами повышения эффективности производства и распределения ресурсов, возможностями максимизации прибыли, что связано с выявлением ключевых параметров производства и их целевых значений. В российской теории и практике анализа эффективности преобладает использование традиционных показателей – прибыль, фондоотдача, рентабельность, себестоимость и т.д. Такой подход не учитывает множество аспектов, в частности разнородность производственных факторов, различие масштабов производства и эффекта убывающей отдачи. Множество частных показателей эффективности является несогласованным, что приводит к субъективному толкованию результатов, возникновению противоречивых выводов, а попытка предложить единый интегральный показатель эффективности приводит к необходимости использования разного рода методик или использованию линейных сверток, что не является оправданным. Одним из подходов к решению данной методологической проблемы является граничный подход к измерению эффективности, предложенный Жераром Дебрэ и Майклом Фарреллом |1-6|, который активно развивается в трудах зарубежных ученых. В рамках данного подхода предполагается, что все производственные системы одного класса, имеющие одинаковый набор входов и выходов в зависимости от масштаба деятельности имеют предел (границу) производственной эффективности. При этом общая эффективность производственного объекта может быть декомпозирована на две составляющие: технологическую (Technical Efficiency - TE) и аллокативную (Allocative Efficiency AE). В работе рассматривается общая задача оценки технологической эффективности производственной системы, метод количественной оценки ТЕ и результаты программной реализации метода в среде R.

2. Постановка задачи оценки технологической эффективности производственной системы

Производственная система — это совокупность всех технологических систем и систем обеспечения их функционирования, использующая ресурсы (входы) для выпуска продукции (выходы) [2].

В качестве выходов (*Outputs*), как правило, рассматриваются объемы выпуска продукции или итоговые финансовые показатели предприятия. В качестве входов (*Inputs*) могут выступать затраты ресурсов в натуральном или в стоимостном выражении в расчете на единицу продукции или в целом на производство за рассматриваемый период времени.

Пусть предприятие, используя n входов $(x_1, ..., x_n)$ производит m видов продукции $(y_1, ..., y_m)$. Граничный подход предполагает существование предела – границы эффективности Z^* (Efficiency Frontier) в пространстве производственных возможностей $Z = \{(x,y) \in \mathbb{R} : x$ производит $y\}$, которая описывается совокупностью вариантов расхода минимального количества ресурсов x^* и производства максимального объема продукции y^* - $Z^* = \{(x^*,y^*) \in \mathbb{R} : x^*$ производит $y^*\}$. Очевидно, что $Z^* \in Z$.

Граница эффективности, "покрывает" или "обволакивает" все неэффективные производственные единицы. Неэффективность производственного объекта i оценивается величиной отклонения входов (превышения расхода ресурсов) x_i и/или отклонения выходов y_i (недопроизводство продукции) от ближайшего граничного значения (x^*, y^*) .

Идея измерения ТЕ, предложенная М. Фарреллом [1–3] заключается в вычислении радиальной меры отклонения наблюдаемого состояния объекта от граничного или эффективного (x^*, y^*) и выражается в виде индекса эффективности $(Index\ Efficiency) - IE$.

Поскольку проекция на границу эффективности может осуществляться по двум направлениям, различают оценку эффективности по входу и эффективность по выходу.

Так, эффективность по входу (Input Efficiency – E) измеряется как отношение радиального расстояния до точки x_i^* , лежащей на границе $Z^* - E = \frac{R(x^*)}{R(x)}$, где $E \leq 1$, $R(\cdot)$ – функция радиального расстояния. Величина E показывает потенциально возможную величину равно пропорционального сокращения производственных расходов предприятия.

Технологическая эффективность по выходу ($Output\ Efficiency-F$) измеряется как отношение радиального расстояния до точки y_i^* и радиального расстояния до точки $y_i-F=\frac{R(y^*)}{R(y)}$, где $F\geq 1$. F показывает величину потенциально возможного равно пропорционального наращивания объемов производства.

3. Метод обволакивающей поверхности (Data Envelopment Analysis)

Группа авторов – А. Чарнз, В. Купер и И. Родес [5,6] предложили метод количественного оценивания величин Е и F посредством решения множества задач линейного программирования $(3\Pi\Pi)$. Данный метод получил название Data Envelopment Analysis (DEA).

Задача оценки технологической эффективности по входу (CCR-input) в предположении о постоянном эффекте о расширении масштабов деятельности (Constant return to scale) для объекта o имеет вид:

$$E \to \min_{(E,\lambda)}, \qquad o = 1, ..., N$$
 (1)

при ограничениях:

$$\sum_{j} \lambda_{j} x_{js} \leq E x_{os};$$

$$\sum_{j} \lambda_{j} y_{jr} \geq y_{or};$$

$$E \geq 0;$$

$$\lambda_{j} \geq 0;$$

$$s = 1, ..., S; \quad r = 1, ..., R; \quad j = 1, ..., N,$$

где E — индикатор эффективности, характеризующий величину пропорционального уменьшения входов; x_{os}, y_{or} — наблюдаемые для o—го объекта выходы и входы; λ_j — весовые параметры модели.

Задача (1) является прямой задачей линейного программирования в стандартной форме и решается, например, симплекс методом.

Для каждого объекта выборки (o=1,...,N) решается задача (1). Из оптимального решения находятся оценки потенциальной экономии ресурсов $\Delta x_{os} = \left(\sum_{j} \lambda_{j}^{*} x_{js} - E x_{os}\right)$

и $\Delta y_{or} = \left(\sum_{j} \lambda_{j}^{*} y_{jr} - y_{or}\right)$ – величина резервов наращивания объемов производства за счет повышения эффективности использования ресурсов.

Задача оценки технологической эффективности по выходу (CCR-output) в предположении о постоянном эффекте о расширении масштабов деятельности для каждого объекта o имеет вид:

$$F \to \max_{(F,\lambda)},$$
 (2)

при ограничениях:

$$\sum_{j} \lambda_{j} x_{js} \leq x_{os};$$

$$\sum_{j} \lambda_{j} y_{jr} \geq F y_{or};$$

$$s = 1, ..., S; \quad r = 1, ..., R,$$

где F — индикатор эффективности, характеризующий величину пропорционального увеличения выходов, при действующих входах; x_{js}, y_{jr} — наблюдаемые для j — го объекта выходы и входы; λ_j — весовые параметры модели.

Для каждого объекта выборки (o=1,...,N) решается задача (2). Оптимальное решение задачи описывает оценки потенциальной экономии ресурсов $\Delta x_{os} = (\sum_j \lambda_j^* x_{js} - x_{os})$ и $\Delta y_{or} = (\sum_j \lambda_j^* y_{jr} - F y_{or})$ – величина равно пропорционального увеличения объемов производства по каждому виду продукции, обеспечивающих достижение эффективного состояния.

Оценки эффективности, получаемые по методу DEA, в зависимости от специфики производственных систем (постоянный эффект от расширения масштабов деятельности – CRS; переменный эффект от расширения масштабов деятельности – VRS), либо в зависимости от направленности достижения границы эффективности (ориентация на вход или на выход) выполняются для различных модификаций базовых моделей (1),(2). В целом классификация моделей DEA представлена в таблице.

Таблица 1 Перечень базовых моделей DEA [2,4,5]

Частично – линейная				Частично – нелинейная	
модель				модель	
CRS		VRS		CRS	VRS
Ориентация	Ориентация	Ориентация	Ориентация	VAR -	INV -
на вход	на выход	на вход	на выход	MULT	MULT
CCR – Input	CCR -	BCC – Input	BCC -	(вариантная	(невариант-
(Charnes,	Output	(Banker,	Output	мультипли-	ная мульти-
Cooper,	(Charnes,	Charnes,	(Banker,	кативная	пликативная
Rhodes,	Cooper,	Cooper,	Charnes,	модель)	модель)
1978)	Rhodes,	1984)	Cooper,	(Charnes,	
	1978)		1984)	Cooper,	
				Seiford,	
				Sturz, 1982)	

4. Программная реализация метода DEA в R

Нахождение решения задачи (1) на реальных данных сталкивается с рядом проблем: во-первых, размером выборки, во-вторых, скоростью решения множества ЗЛП в пакетах прикладных программ. В связи с этим выполнена реализация моделей DEA CCR-input и CCR-output. Общий алгоритм программы представлен на рисунке. Программа реализует загрузку исходных данных из файла *.csv, сгруппированных по правилу – "сначала входы, затем выходы", формирование матриц для решения задачи (1) или (2) и последовательного решения ЗЛП с выводом результатов в отдельный файл.

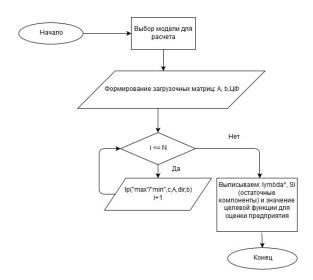


Рисунок 1. Алгоритм решения задач (1) и (2) оценки ТЕ по выборке предприятий

Тестирование программы проводилось на основе данных ряда сельскохозяйственных предприятий Алтайского края для пяти входов и двух выходов. Сравнение результатов

осуществлялось с известными оценками, опубликованными раннее [3]. Преимущество использования разработанной программы заключается в возможности решения задач большой размерности (более 1 тыс. предприятий), в удобстве и автоматизме использования.

Развитие работы предполагает модернизацию модуля для оценки ТЕ при переменном эффекте от расширения масштабов деятельности, оценки эффективности по масштабу, эффективности распределения ресурсов и суперэффективности.

Список литературы

- 1. Понькина Е.В., Курочкин Д.В. Оценка технологической эффективности производства зерновых культур и подсолнечника в условиях Кулундинской степи Алтайского края. Подход Data Envelopment Analysis // Региональная экономика: теория и практика. М.: ООО Финансы и кредит, 2012. Т. 15. Вып.5. С. 914—927.
- 2. Лобова С.В., Понькина Е.В. Практические аспекты измерения эффективности производства зерна на основе методологии DEA // Финансовая аналитика: проблемы и решения. 2013. N_2 44(182). С. 2–10.
- 3. Боговиз А.В., Понькина Е.В., Лобова С.В. Использование эконометрического подхода к измерению эффективности сельхозорганизаций // АПК: экономика и управление. 2016. № 10. С. 23–34.
- 4. Лисситса А., Бабичева Т. Анализ оболочки данных (DEA) современная методика определения эффективности производства // DISCUSSION PAPER. 2003. № 50. С. 38.
- 5. Bogetoft P., Otto L. Benchmarking with DEA, SFA and R: International Series in Operations Research & Management Science // Springer New York Dordrecht Heidelberg London.— 2011.—Vol. 157.—P. 352.
- 6. Charnes A., Cooper W., Rhodes E. Measuring the Efficiency of Decision Making Units // European Journal of Operational Research. 1978. Vol. 2. P. 429–444.