Государство, гражданское общество истабильность 27
Научная статья / Research Article
УДК 004.89
DOI: 10.14258/SSI(2024)1-02.
О применимости тематического моделирования для
определения акторов социально-политической мобилизации
сиспользованием low-code аналитических платформ
Иван Юрьевич Степанов
Кемеровский государственный университет, Кемерово, Россия,
zextel1995@gmail.com, https://orcid.org/0000-0002-7938-8049
Елена Анатольевна Кранзеева
Кемеровский государственный университет, Кемерово, Россия,
elkranzeeva@mail.ru, https://orcid.org/0000-0003-2577-9017
Евгений Васильевич Головацкий
Кемеровский государственный университет, Кемерово, Россия,
xomaik@rambler.ru, https://orcid.org/0000-0002-8485-5852
Инна Вениаминовна Донова
Кемеровский государственный университет, Кемерово, Россия,
idonova@gmail.com, https://orcid.org/0000-0001-9370-5402
Анна Леонидовна Бурмакина
Кемеровский государственный университет, Кемерово, Россия,
anna-sidjakina@rambler.ru, https://orcid.org/0000-0003-3087-4393
Аннотация.      --
 ,  ,   , -
  low-code ,     
        -
- .  ,   
   ,    
 ,   ,  -
          -
 - .    -, -
,        
     .
Ключевые слова:  , , --
 , ,  ,  
Society andSecurity Insights № 1 2024 28
Финансирование:       -
    ( FZSR-2023-0006 « --
     :  
 data-mining»).
Для цитирования: Степанов И.Ю., Кранзеева Е.А., Головацкий Е.В., Донова И.В., Бурма-
кина А.Л. Оприменимости тематического моделирования для определения акторов социаль-
но-политической мобилизации сиспользованием low-code аналитических платформ // Society
andSecurity Insights. 2024. Т.7, №1. С.27–39. doi: 10.14258/ssi(2024)1-02.
e Applicability ofTopic Modeling to Identify Actors ofSocio-
Political Mobilization using Low-Code Analytical Platforms
Ivan Yu. Stepanov
Kemerovo State University, Kemerovo, Russia,
zextel1995@gmail.com, https://orcid.org/0000-0002-7938-8049
Elena A. Kranzeeva
Kemerovo State University, Kemerovo, Russia,
elkranzeeva@mail.ru, https://orcid.org/0000-0003-2577-9017
Evgenyi V. Golovatskyi
Kemerovo State University, Kemerovo, Russia,
xomaik@rambler.ru, https://orcid.org/0000-0002-8485-5852
Inna V. Donova
Kemerovo State University, Kemerovo, Russia,
idonova@gmail.com, https://orcid.org/0000-0001-9370-5402
Anna L. Burmakina
Kemerovo State University, Kemerovo, Russia,
anna-sidjakina@rambler.ru, https://orcid.org/0000-0003-3087-4393
Abstract. earticle presents acontemporary perspective on theanalysis ofsocio-political
processes, grounded inthe premise that theapplication oftopic modeling through low-code plat-
forms can substantially enhance thequality ofresearch performed by analysts.  is enhance-
ment is particularly signi cant inidentifying thepivotal actors andtheevolving dynamics with-
in socio-political processes.  eauthors argue that topic modeling, arelatively novel approach
compared to traditional methods, is capable ofuncovering relationships andtrends that might
otherwise remain obscured. In advocating for this approach, thepaper proposes an integrated
methodology.  is methodology is designed to empower researchers inthe social sciences, en-
Государство, гражданское общество истабильность 29
abling them to e ectively utilize these innovative tools.  eobjective is to deepen their compre-
hension ofthe underlying mechanisms that drive socio-political mobilization. To substantiate
their argument, theauthors present various case studies.  ese case studies demonstrate theef-
fectiveness oftopic modeling inrevealing otherwise hidden connections among various actors.
Additionally, they illustrate how topic modeling sheds light on thecontributions ofthese actors
to thedynamics ofmobilization.  is approach represents asigni cant advancement inthe  eld,
o ering new insights andamore nuanced understanding ofcomplex socio-political landscapes.
Keywords: topic modeling, clustering, socio-political interaction, mobilization, analytical
platforms, computer sociology
Financing:  ework was carried out with the nancial support ofthe Ministry ofScience
andHigher Education ofthe Russian Federation (project FZSR-2023-0006 «Network socio-politi-
cal mobilization inthe regions ofthe resource type ofSiberia: research capabilities ofdata-mining
tools»).
For citation: Stepanov, I.Yu., Kranzeeva, E.A., Golovatsky, E.V., Donova, I.V., Burmakina, A.L.
(2024). The Applicability of Topic Modeling to Identify Actors of Socio-Political Mobilization using
Low-Code Analytical Platforms. Society andSecurity Insights, 7(1), 27–39. (In Russ.). doi: 10.14258/
ssi(2024)1-02.
Введение
  —    
       -
(Apishev, Vorontsov, 22).
, «
 »  «      ».
 -
    /  .
       ,  Word2Vec
FastText.      ,
  ,   RNN, GRU LSTM,  
        (Gre et
al., 217).
      
LSA— Latent Semantic Analysis. LSA   1988 .  -
 . (Deerwester et al, 1988). 1999 .    
  (PLSA) (Hofmann, 2).
     -  
 ().        
 .      
 (Latent Dirichlet Allocation, LDA)—    
   (, 22).
   —   -
  (Additive Regularization for Topic Modeling, ARTM) 
  PLSA   .  -
Society andSecurity Insights № 1 2024 30
 ARTM   .     
LDA  ARTM  ,   , 
   (, , 219).
 -  ,    -
     : --
 ,  ,  —  
 ,    «» 
,      .
 VK («-
»),       
,      .
   state-of-the-art  
  , —   -
 ,    
      . -
 ,    « » , 
  low-code  .
 ,      -
,    «»,  ,   -
 .
      
    .   
    ( ) -
     ,  Orange Data Mining, KNIME
Analytical Platform  PolyAnalyst.     -
  ,   . ,  
Orange Data Mining      -
      (, 222),
 (,
, 22),      -
  (, 222). ,   -
     ( )
(, 222).  PolyAnalyst   
  —     , -
,       -
    (, , , 221). -
      
(  ,  RSS-)    (-
., 221), (, 222),
  -  (, 222).
    - 
       -
    ,    -
Государство, гражданское общество истабильность 31
   (, 216).  -
      
       , 
     ( ., 218).
- ,    -
    , 
       
 ,     
.    ,   (-
 , )      
   ,     
 ,   
.       
      «
»,  —    
(, 218)   .
     
  n-   ,   -
        . 
big data       
    (, ,   ..).
         -
   (bias):    (selection bias),
    ;  -
 (description bias),   /   -
 ;   (research bias),  
    ( ) (Hutter, Porta, 214).
   ()   
   ,   -  -
      . -, «-
»  (  ),  -
      
,   ,  -
-  . -,     
   (   -
    ) (, , 216;
, 219).
Методы исследования
        
      
-    low-code -
 .     , 
Society andSecurity Insights № 1 2024 32
  ,  , -
-,
     
   .  , -
    PolyAnalyst,   -
  ,   ,  
  VK,     -
  .      -
       -
  -   
.       -
.  ,     -
       .
       low-
code  - .
Результаты исследования
  ,     -
   ,   
     PolyAnalyst 
 — ,   ,  -
   «»   ,  -
,   ,    ,
,  .   -
 ,   ,  -
   /   ,
     .  
  API VK  -,  -
   ,    ( -
,  id  .).     -
    LDA  gensim 
-
,       (.1).
       «»,
    ,    , 
pipeline .       
     PolyAnalyst (.2).
    PolyAnalyst   -
,       . ,
  « »    -
-  .     ,
    «»    -
  /    (.3).
Государство, гражданское общество истабильность 33
 1—      LDA (, 
,  222 .,   ~2  ,    ).
Figure 1— Results ofthematic modeling using theLADA model (Kuzbass, Tyumen region, December
222, initial array of~2 million lines, manual selection ofthematic groups).
Society andSecurity Insights № 1 2024 34
 2—      PolyAnalyst.
Figure 2—  estructure ofthe research assembly stages inthe PolyAnalyst platform.
Государство, гражданское общество истабильность 35
 3—       
  222 . (,  ,    ).
Figure 3— Enlarged thematic grouping ofthe agenda ofnetwork communities inthe period from
January to December 222 (Kuzbass, Tyumen region, manual sorting ofthematic groups).
Обсуждение изаключение
     -
        -
    .  -
    « », 
    .
     -
   - . 
 ,     low-code -
 ,      
   .    -
     - -
,       .
      -
 low-code    
 .        -
  - ,  
     .
Society andSecurity Insights № 1 2024 36
СПИСОК ИСТОЧНИКОВ
 . .      // -
 . 219. 49 (287). . 539–542.
 . .,  . .  datamining   -
   ( ) // 
. 22. 3 (68). C. 1626.
 . .,  . .    
:    // PolitBook. 216. 3.
 . .        
 ORANGE ( ) // 
 (  )   -
 (, 13  222 .). , 222. C. 185–187.
 . .,  . .,  . .,  . . 
--
     «» // : 
. 221. 3. . 1-17. DOI: 1.7256/2454-749.221.3.35234
. .-
:-
  //   .   -
. 222. 14 (2). https://doi.org/1.1772/273-6681-222-2-18-26
 . .      
  //  . 222. 3. . 493–5.
 . .    - -
   (   ) //  -
 . 222. . 5: . 5. . 1628.
 . .,  . .,  . .   -
      : -
    //   -
 . 221. 464. . 81–9. DOI: 1.17223/15617793/464/1
 . .,  . .,  . .   
     //  -
:  . 221. 2 (41). . 5772. doi:1.18799/26584956/221/3
(42)/189
 . .     . .: -
-, 216. 296..
. . Data mining--
:      «» // 
   . . . . 222. 6. . 126–
136. doi:1.21686/2413-2829-222-6-126-136
 .       -
  //  . 218..17, 2. . 317341. doi:
1.17323/1728-192X-218-2-317-341
Государство, гражданское общество истабильность 37
 . .,  . .      -
  //  .  . 219.
.23? 4. . 723.
 . .      -
      «» //  
. 22. 6–2 (75). . 45–49.
Apishev M., Vorontsov K. Learning topic models with arbitrary loss // Proceedings
ofthe XXth Conference ofOpen Innovations Association FRUCT. 22. Vol. 26. P.18.
DOI: 1.23919/FRUCT4888.22.987559
Deerwester S., et al, Improving Information Retrieval with Latent Semantic Indexing,
Proceedings ofthe 51st Annual Meeting ofthe American Society for Information Science
25, 1988. Pp. 36–4.
Golovatsky E., Kranzeeva E., Orlova A., Burmakina A. Social Practices ofMobilizing
Population Initiatives: Prospects for Hybrid Methodology // International Conference
on Communicative Strategies ofInformation Society (CSIS 218). Advances inSocial
Science, Education andHumanities Research, 218. Vol. 289. Pp. 8–13. doi: 1.2991/csis-
18.219.2
Gre K., Srivastava R. K., Koutník J., Steunebrink B. R., andJ.Schmidhuber, «LSTM:
A Search Space Odyssey,» in IEEE Transactions on Neural Networks and Learning
Systems, Vol. 28, No 1. Pp. 2222–2232, Oct. 217, doi: 1.119/TNNLS.216.2582924.
Hofmann  . Learning the Similarity of Documents: an information-geometric
approach to document retrieval andcategorization, Advances inNeural Information
Processing Systems 12. MIT Press, 2. Pp. 914–92.
Hutter S. 214. Protest Event Analysis and Its O spring // della Porta D. (ed.).
Methodological Practices in Social Movement Research. Oxford: Oxford University
Press. Pp. 335–367.
REFERENCES
Alekseev, M. S. (219). Technologies ofdeviant behavior inthe network space. Young
scientist, 49(287), 539–542. (InRuss.).
Anashkina, M. V., & Kolesova, I. V. (22). Application of datamining inthe process
ofidentifying unfair practices inthe securities market (based on thecase). Finansovye
issledovaniya, 3(68), 1626. (InRuss.).
Volodenkov S. V., Miteva V. V. (216). Network information wars inmodern conditions:
main actors andstrategies. PolitBook.3. (InRuss.).
Goncharenko, Yu. D. (222). To thepossibility ofgrouping ceramics inthe environment
for analysis ofORANGE data (based on thematerials ofthe fort). In: D. V.Vasilev (Ed.),
Materials of the All-Russian (with international participation) archaeological student
conference (Astrakhan, February 01–03, 2022). (pp. 185–187). Astrahan. (InRuss.).
Gorchakova, O. Yu., Larionova, A. V., Aleksandrova, Yu. K., & Petrov, E. Yu. (221).
Features of the social and political discourse on the example ofregional news pub-
lics inthe social network «VKontakte». Filologiya: nauchnye issledovaniya, 3, 117.
doi:1.7256/2454-749.221.3.35234 (InRuss.).
Society andSecurity Insights № 1 2024 38
Isaeva, E. V. (222). Topic modelling inthe computer security discourse: case study on
newsletters andnews feeds. Vestnik Permskogo universiteta. Rossijskaya i zarubezhnaya
lologiya, 14(2). doi:1.1772/273-6681-222-2-18-26 (InRuss.).
Kolbyagina, L. A. (222). Cluster analysis ofthe sectoral structure oftax revenues at
theregional level. Izvestiya BGU, 3, 493–5. (InRuss.).
Konyshev, E. V. (222). Methods ofstudying themental tourist-recreational space ac-
cording to thereviews oftourists (on theexample ofKirov region). Vestnik Moskovskogo
universiteta. Ser. 5: Geogra ya, 5, 1628. (InRuss.).
Kranzeeva, E. A., Golovackij, E. V., & Orlova, A. V. (221). Social andpolitical interaction
ofloca l commu nities ofthe region inreac tive relations: cases ofurban improvement . Vest-
nik Tomskogo gosudarstvennogo universiteta, 464, 81–9. doi:1.17223/15617793/464/1.
Lebedkina, N. S., Aleksandrova, Yu. K., & Orlova, V. V. (221). Analysis of migration
ows ofyouth inthe territory ofthe constituent entities ofthe Russian Federation. Vek-
tory blagopoluchiya: ekonomika i socium, 2(41), 5772. doi:1.18799/26584956/221/3(42
)/189 (InRuss.).
Miroshnichenko, I. V. (216). Network public policy andmanagement. Moscow: Argam-
ak-Media. (InRuss.).
Mihnenko, P. A. (222). Data mining asatool ofmultimodal business analytics: transfor-
mation ofvocabulary ofannual reports ofthe state corporation «RosTech». Vestnik Rossi-
jskogo ekonomicheskogo universiteta im. G. V. Plehanova, 6, 126–136. doi:1.21686/2413-
2829-222-6-126-136 (InRuss.).
Semenov, A. (218). Event analysis ofprotests asatool to study political mobilization.
Sociologicheskoe obozrenie, 17(2), 317341. doi:1.17323/1728-192X-218-2-317-341
(InRuss.).
Suhareva, A. V., & Voroncov, K. V. (219 Building acomplete set ofprobabilistic themat-
ic model topics. Intellektual’nye sistemy. Teoriya i prilozheniya, 23(4), 723. (InRuss.).
Cherkasov, E. I. (22). Comparison ofalgorithms ofthematic modeling indetermining
subjects ofposts ofpeople inthe social network «VKontakte». Evrazijskij Soнuz Uche-
nyh, 62(75), 45–49. (InRuss.).
Apishev, M., & Vorontsov, K. (22). Learning topic models with arbitrary loss. InL Pro-
ceedings ofthe XXth Conference ofOpen Innovations Association FRUCT, Vol. 26 (pp.
1–8). DOI: 1.23919/FRUCT4888.22.987559
Deerwester, S., et al. (1988). Improving Information Retrieval with Latent Semantic In-
dexing. Proceedings ofthe 51st Annual Meeting ofthe American Society for Information
Science, 25, 364.
Golovatsky, E., Kranzeeva, E., Orlova, A., & Burmakina, A. (218). Social Practices
ofMobilizing Population Initiatives: Prospects for Hybrid Methodology. In: Interna-
tional Conference on Communicative Strategies ofInformation Society (CSIS 2018). Ad-
vances inSocial Science, Education andHumanities Research, 289 (pp. 813). https://doi.
org/1.2991/csis-18.219.2
Gre , K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (217).
LSTM: ASearch Space Odyssey. IEEE Transactions on Neural Networks andLearning
Государство, гражданское общество истабильность 39
Systems, 28(1), 2222-2232. doi:1.119/TNNLS.216.2582924
Hofmann, T. (2). Learning thesimilarity ofdocuments: an information-geometric
approach to document retrieval andcategorization. In: Advances inNeural Information
Processing Systems 12 (pp. 914–92). MIT Press.
Hutter, S. (214). Protest event analysis andits o spring. In D. della Porta (Ed.), Meth-
odological Practices inSocial Movement Research (pp. 335367). Oxford: Oxford Uni-
versity Press.
СВЕДЕНИЯ ОБ АВТОРАХ / INFORMATION ABOUT THE AUTHORS
  —     
,   , . , .
Ivan Yu. Stepanov— Assistant Professor, Department ofDigital Technologies, Institute
ofDigitalization, Kemerovo State University, Kemerovo, Russia.
  — - . , , .  -
 ,   , . , .
Elena A. Kranzeeva — Dr. Sci. (Sociology), Head of the Department of Sociological
Sciences, Kemerovo State University, Kemerovo, Russia.
  — - . , ,  
 ,   , . ,
.
Evgeny V. Golovatsky— Dr. Sci. (Sociology), Professor ofthe Department ofSociologi-
cal Sciences, Kemerovo State University, Kemerovo, Russia.
  — . . ,   
 ..     ,  -
 , . , .
Inna V. Donova— Cand. Sci. (Economics), Associate Professor, I.P. Povarich Depart-
ment ofManagement, Institute ofEconomics andManagement, Kemerovo State Uni-
versity, Kemerovo, Russia.
  —    -
 ,   , . , .
Anna L. Burmakina— Senior Lecturer, Department ofSociological Sciences, Kemerovo
State University, Kemerovo, Russia.
Статья поступила вредакцию 12.01.2024;
одобрена после рецензирования 15.02.2024;
принята кпубликации 20.02.2024.
The article was submitted 12.01.2024;
approved after reviewing 15.02.2024;
accepted for publication 20.02.2024.