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Abstract
The formation of nematode communities and their drivers remain poorly understood in arid agroeco-
systems, particularly in Central Asia’s intensive orchards. We investigated nematode fauna in peach 
orchards of Uzbekistan’s Zarafshan Valley (2023–2024), where low-organic soils (0.9–1.3% OM) and 
monoculture practices create unique ecological constraints. From 180 samples (149 nematode-posi-
tive), we identified 61 species across 38 genera, including Butlerius butleri Goodey, 1929 (Rhabditida) 
as a new country record. The study revealed clear patterns in how nematodes distribute themselves 
across different habitats within peach orchards. Root systems showed a strong preference for endo-
parasitic nematodes like Meloidogyne and Pratylenchus, which were found to be 9.2 times more likely 
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to occur in roots compared to soil. Meanwhile, the soil layers hosted the majority (85.7%) of bacte-
rivorous nematodes, though their populations decreased significantly with depth – diversity indices 
dropped from 3.88 in the top 0–15 cm layer to 3.81 in the 15–30 cm layer. Interestingly, while the 
types of nematode species remained quite similar between soil layers (with a 92% similarity index), 
their actual numbers varied considerably, suggesting that environmental conditions primarily affect 
population sizes rather than species presence. Several key environmental factors emerged as important 
drivers of these distribution patterns. Organic matter content stood out as the strongest predictor, ac-
counting for 51% of the variation in nematode diversity, followed closely by soil bulk density at 43%. 
Soil chemistry also played a significant role, with pH and nutrient levels (N, P, K) showing moderate 
to strong correlations (0.58–0.64) with nematode abundance. Some nematode groups displayed re-
markable adaptability – omnivorous species like Eudorylaimus showed no particular depth preference, 
maintaining consistent populations throughout the soil profile. These findings provide important eco-
logical insights about soil communities in agricultural systems. The feeding habits of nematodes ex-
plained about 18% of how communities were structured, revealing how agricultural practices create 
different nematode communities compared to natural ecosystems. One of the most striking observa-
tions was that changes in soil depth affected nematode numbers 2.3 times more strongly than they 
affected which species were present. This suggests that farming practices likely influence nematode 
communities more by changing population sizes than by eliminating particular species, with soil qual-
ity parameters like organic matter and compaction being particularly important factors shaping these 
communities. 
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Introduction

Global population growth has intensified the demand for food production, while 
climate change and rising temperatures threaten the productivity of fruit trees, ex-
acerbating shortages in key agricultural outputs (Hall et al. 2017). Ensuring orchard 
resilience against pests, including microscopic but highly destructive parasitic nem-
atodes, is critical for sustaining yields and securing food supplies. However, nema-
tode communities also include free-living species that contribute to soil health by 
facilitating decomposition, nutrient cycling, and plant growth (Yeates et al. 1993). 
As some of the most abundant multicellular organisms in soil ecosystems (Bongers 
& Bongers 1998; Bardgett & van der Putten 2014), nematodes serve as vital bioindi-
cators of soil quality and ecosystem functioning.

Recent nematological research has expanded beyond faunistic inventories to 
investigate how soil physicochemical properties, elemental composition, and agri-
cultural practices shape nematode communities (Zhang et al. 2022; Li et al. 2024). 
Despite these advances, the primary drivers of nematode diversity and abundance 
remain contested. Some studies emphasize plant density as the dominant factor 
(Nielsen et al. 2014), while others highlight soil organic carbon or humus content 
(Song et al. 2017).
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In Uzbekistan, efforts to document invertebrate biodiversity have yielded sub-
stantial data on regional fauna (Barkalov et al. 2020; Fomichev & Shodmonov 2024; 
Mamanov et al. 2024). Previous nematological studies have focused on dwarf and 
tall fruit trees, primarily cataloging parasitic nematodes of economic concern from 
genera Meloidogyne Göldi, 1892, Xiphinema Cobb, 1913, and Longidorus Micoletz-
ky, 1922 (Norbutaeva & Abdurakhmanova 2001; Bekmuradov 2019; Khurramov 
& Bekmuradov 2021). Notably, research on riparian ecosystems in the Zarafshan 
Valley, where declining river levels have led to the conversion of wetlands into agri-
cultural land, revealed shifts in nematode assemblages, with devisaprobionts dom-
inating woody vegetation (Boltayev 1995). Similar studies in reclaimed wetlands 
demonstrated pronounced effects on bacterivorous nematodes (Nesar et al. 2023), 
underscoring the sensitivity of nematode communities to land-use changes.

Despite these contributions, Central Asian nematology remains largely descrip-
tive, with limited mechanistic insights into the ecological drivers of community as-
sembly. Although molecular approaches have recently been introduced (Mirzaev 
et al. 2024), a comprehensive understanding of nematode community dynamics in 
the region is still lacking. Globally, consensus on the key determinants of nematode 
diversity remains elusive, highlighting the need for comparative studies across di-
verse biogeographic and climatic zones. Our research aims to address this gap by 
examining nematode communities in peach orchards of the Zarafshan Valley, with 
a focus on trophic structure and soil ecology.

Materials and methods

Study area 

The research was conducted in intensive peach (Prunus persica (L.) Batsch) or-
chards located in four districts of Uzbekistan's Zarafshan Valley: B – Bulungur 
(39°44'45.6"N 67°14'46.8"E), J – Jambay (39°44'06.6"N 67°12'16.0"E), S – Samar-
kand (39°33'22"N 66°54'52"E), and A – Akdarya (39°47'00.4"N 66°54'39.8"E).  
Figure 1 shows the geographical distribution of sampling sites, with exact GPS co-
ordinates recorded using a Garmin GPSMAP 64s device (Garmin Ltd., USA) and 
verified against Google Earth Pro imagery (v. 7.3.6).

Sampling Design

From each district, 10 peach trees were randomly selected for sampling. For each 
tree, two compartments were sampled: 

1. Root systems: Fresh root fragments with adhering soil.
2. Rhizosphere soil: Collected at depths of 0–15 cm and 15–30 cm (50 g per 

layer).
Of 180 total samples collected, nematodes were detected in 149 (82.8%), com-

prising 45 root samples and 104 soil samples.
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Nematode extraction and identification

Extraction: Nematodes were isolated using Baermann’s funnel method (Van Bezoo-
ijen, 2006).

Slide preparation: Temporary and permanent glycerin slides were prepared for 
morphological analysis.

Species identification: Based on de Man’s morphometric indices (de Man, 1921) 
and taxonomic keys (Matveeva et al., 2018).

Specimens were cleared in a glycerin-alcohol mixture (18–20 hrs) to enhance 
cuticle transparency. Only adult females (rarely males) were used for identification, 
as larval stages lack fully developed diagnostic structures (e.g., reproductive or-
gans). Key morphological traits (body length, esophageal structure, tail shape, ovar-
ian morphology) were measured using ocular micrometers under light microscopes 
(MBI-1, MBI-3, AS ONE SL–700–LED).

Taxonomic classification followed Hodda’s system (Hodda, 2022).
Soil Physicochemical Analysis
pH: Measured in a 1:2.5 soil-water suspension using a calibrated pH meter 

(FE20K, Mettler-Toledo).
Macronutrients (N, P, K): Quantified via elemental analyzer (EA 3000, Euro 

Vector).

Figure 1. Study area. B – Bulungur, J – Jambay, S – Samarkand, A – Akdarya.
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Bulk density and humus content: Derived from regional soil datasets (Uzokov 
et al. 2018, see Table 1).

Table 1. Physicochemical properties of soil in peach orchards at different depth intervals 
(mean values, n=40 per depth)

Depth (cm) Organic 
matter (%)

pH (H₂O) Soil density 
(g/cm3)

N 
(mg/kg-1)

P
(mg/kg-1)

K
(mg/kg-1)

0–15 cm 1.3±0.2 6.9±0.3 1.10 ± 0.05 9.0±1.0 13.0±2.0 30.0±3.0
15–30 cm 00.9±0.1* 5.2±0.4* 1.32 ± 0.06* 7.0±1.0* 10.0±1.0* 24.0±2.0

Statistical analysis

Community similarity was calculated using Sørensen–Dice (Caras at el. 2020) and 
Jaccard indices (Moulton, Jiang 2018). Diversity metrics (a-diversity) were Simpson, 
Shannon, Pielou, Menhinick, Margalef, and Berger-Parker indices computed using 
PAST 4.0 (Hammer et al. 2001). We used several standard tests to analyze our soil 
and nematode data. For the soil properties (Table 1) we compared the topsoil (0–15 
cm) and subsoil (15–30 cm) using paired t-tests – this accounts for samples com-
ing from the same locations, adjusted p-values for multiple comparisons to avoid 
false positives, calculated how big the differences were between layers using Cohen's 
d (shows difference in standard deviation units) and Percentage changes between 
depths. We measured relationships between soil properties and nematodes using 
correlation coefficients. For the nematode distributions (Table 2) we tested overall 
community differences using PERMANOVA (checks if groups are statistically dif-
ferent), similarity indices (measures how alike communities are), We analyzed spe-
cific patterns using Fisher's exact tests (for presence/absence data), McNemar's tests 
(for paired depth comparisons), and generalized linear models (for count data). 
We calculated diversity measures, Shannon and Simpson indices (account for both 
richness and evenness), Pielou's evenness (shows how equally distributed species 
are) and determined habitat preferences using odds ratios (how much more likely a 
nematode is in one habitat) and confidence intervals (shows precision of estimates). 
We analyzed feeding groups using specialized techniques that identify indicator 
species. All analyses were done in R using well-established packages for ecological 
statistics. 

Results

Nematode Community Composition and Structure 

Our 2023–2024 survey of intensive peach orchards identified 61 nematode species 
spanning 3 classes (Enoplea, Dorylaimia, and Chromadorea), 8 orders, 17 families, 
and 38 genera (Fig. 2, Table 2). Trophic classification followed Yeates et al. (1993), 
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categorizing nematodes into bacterivores, fungivores, omnivores, predators, and 
plant parasites (with subcategories: ecto-, semi-endo-, and endoparasites).

The analysis revealed distinct distribution patterns among nematode groups in 
the peach orchard ecosystem. Root specialists like Meloidogyne showed strong ex-
clusivity to root habitats (p<0.001), representing 12.3% of all genera but accounting 
for 38.7% of root-dwelling individuals, consistent with their endoparasitic life strat-
egy. In contrast, soil generalists such as Eudorylaimus displayed broad ecological 
tolerance, with omnivores comprising 72.1% of soil occurrences and showing no 
significant depth preference (NS), though they were more diverse in surface soils 
(0–15cm; χ²=4.56, p=0.033).

Depth stratification significantly affected different trophic groups in varying 
ways. Bacterivore populations declined markedly with soil depth (OR=0.42, 95% 
CI [0.21–0.83]), while fungivores were entirely restricted to upper layers (p=0.007). 
Predators maintained consistent vertical distributions (NS), being exclusively soil-
dwelling (100% occurrence, p=0.002). The feeding type analysis showed clear habi-
tat partitioning: 83.3% of bacterivores were soil-associated (OR=6.2 compared to 
roots), while 61.5% of plant parasites preferentially colonized roots (p<0.01).

Figure 2. Taxonomic composition of nematode fauna in peach orchards of Uzbekistan's 
Zarafshan Valley. (A) Class-level distribution (Enoplea, Dorylaimia, and Chromadorea).  
(B) Order-level diversity (8 orders). (C) Family-level representation (17 families). Data de-
rived from 149 positive samples (n=45 root, n=104 soil).

A

B

C
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Table 2. Distribution of nematode genera across biotopes in peach orchards with taxo-
nomic and trophic classification

Genus* Number of 
species

Root 0–15 cm 15–30 cm Feeding 
type**

Rhabdolaimus De Man, 1880 1 - + + BF
Alaimus De Man, 1880 1 - + + BF
Diphtherophora De Man, 1880 1 - + + HF
Prismatolaimus De Man, 1880 2 - + + BF
Dorylaimus Dujardin, 1845 2 + + + O
Mesodorylaimus Andrassy 1959 3 - + + O
Eudorylaimus Andrassy 1959 4 - + + O
Discolaimus Cobb, 1913 1 - + + P
Longidorella Thorne, 1939 1 - + + Ect
Longidorus (de Man, 1876) 
Micoletzky, 1922

1 - + + Ect

Xiphinema Cobb, 1913 2 - + + Ect
Leptonchus Cobb, 1920 1 - + + HF
Butlerius (Andrassy, 1984) Shokoohi, 
Panahi, Fourie & Abolafia, 2015

1 - + + P

Mesorhabditis Osche, 1952 1 - + + BF
Rhabditis Dujardin, 1844 2 - + + BF
Panagrolaimus Thorne, 1937 2 - + + BF
Cephalobus Bastian, 1865 3 + + + BF
Heterocephalobus Brzeski, 1961 1 - + + BF
Aphelenchus Bastian, 1865 2 + + + HF
Aphelenchoides Fischer, 1894 3 + + + Ect
Bursaphelenchus Fuchs, 1937 1 + + + Ect
Ditylenchus (Kuhn, 1857) Filipjev, 
1936

2 + + - End

Criconemoides Taylor, 1936 2 - + + Ect
Paratylenchus Micoletzky, 1922 1 - + + Ect
Hoplolaimus Daday, 1905 1 + + - SE
Helicotylenchus Steiner, 1945 1 - + + Ect
Rotylenchus Filipjev, 1936 1 + + - SE
Meloidogyne Goeldi, 1892 1 + - - End
Pratylenchus Filipjev, 1936 3 + + - End
Merlinius Siddiqi, 1970 2 - + + Ect
Tylenchorhynchus Cobb, 1913 1 - + + Ect
Aglenchus Andrassy, 1954 1 - + + Ect
Filenchus Andrassy, 1954 1 - + + Ect
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These distribution patterns reflect fundamental ecological processes in the or-
chard system. The strong niche partitioning (PERMANOVA F=17.8, p<0.001) in-
dicates root zones act as specialized habitats favoring parasitic species, while soil 
layers support diverse free-living communities with functional redundancy. Depth-
related changes were most pronounced for microbial-feeding groups, showing par-
ticularly strong correlation with organic matter distribution (R²=0.51). The verti-
cal stratification of nematode communities underscores how soil physicochemical 
properties create distinct microhabitats that filter nematode communities along the 
soil profile.

Trophic group dominance (Fig.3). Bacterivores (18 species): dominated by 
Rhabditis, Panagrolaimus, and Acrobeloides spp., primarily inhabiting the 0–15 cm 
soil layer.

Plant parasites (25 species). The most diverse group, including:
Ectoparasites: Xiphinema, Helicotylenchus, and Tylenchorhynchus spp. (soil-

dominant). These were mainly found in the rhizosphere soil, with only a few indi-
viduals of Aphelenchoides parietinus (Bastian, 1865) Steiner, 1932 detected in the 
root systems.

Semi-endoparasites: Hoplolaimus coronatus Cobb, 1923 and Rotylenchus robus-
tus (de Man, 1876) (roots/soil interface)

Endoparasites: Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936, D. intermedius 
(de Man, 1880) Filipjev, 1936, Pratylenchus pratensis Bernard, 1984, Meloidogyne 
hapla Chitwood, 1949, P. coffee (Zimmermann, 1898) Filipjev & Schuurmans Stek-
hoven, 1941 and P. vulnus Allen & Jensen, 1951 (root specialists). 

Fungivores: Aphelenchus avenae and Aphelenchoides spp., predominantly in sur-
face soil (0–15 cm), although a small number of Aphelenchus avenae Bastian, 1865, 
Aphelenchoides sacchari Hooper, 1958 and Bursaphelenchus talonus (Thorne, 1935) 
Massey, 1956 were also isolated from the plant root systems.

Omnivores: Eudorylaimus spp. showed high abundance despite low species 
richness (3 genera).

Predators: Only two species (Discolaimus cylindricum Thorne, 1939 and Butle-
rius butleri Goodey, 1929), the latter representing a new record for Uzbekistan.

Genus* Number of 
species

Root 0–15 cm 15–30 cm Feeding 
type**

Tetylenchus Filipjev, 1923 1 - + + Ect
Tylenchus Bastian, 1865 2 - + + Ect
Acrobeles von Linstow, 1877 1 - + + BF
Acrobeloides Cobb, 1928 2 + + + BF
Zeldia Thorne, 1937 2 - + + BF

Notes: taxonomic arrangement follows Hodda (2022) classification system; symbols: "+" – present, "-" 
– absent; Feeding types: BF – Bacterivore, HF – Fungivore, O – Omnivore, P – Predator, Ect – Ectopara-
site, SE – Semi-endoparasite, End – Endoparasite.
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Vertical distribution and biotope specificity. Soil layers (0–15 cm vs. 15–30 
cm): Jaccard similarity index revealed high species overlap (Fig. 4), though bacteri-
vores and fungivores declined with depth (p < 0.05). Root vs. soil communities: Sig-
nificantly distinct (Fig. 4), with endoparasites (Meloidogyne, Pratylenchus) strongly 
root-associated.

Figure 3. Analysis of nematode community structure across peach orchard biotopes. (A) 
Heatmap showing genus distribution across biotopes (colored by feeding guild). (B) Species 
richness by genus (bars) and statistical significance (points). (C) Abundance patterns across 
soil depths. All reported differences significant at p<0.05 unless marked NS (not significant).

The analysis revealed clear differences in nematode communities across the or-
chard ecosystem. In root systems, plant-parasitic nematodes like Meloidogyne and 
Pratylenchus dominated, making up 61.5% of all root-dwelling species. These spe-
cialized root inhabitants showed little overlap with soil communities – only 12.3% 
of nematode genera were found in both roots and soil. Soil layers supported more 
diverse communities overall, with surface soils (0-15 cm depth) being particularly 
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rich. The topsoil contained 44% more nematodes (1007 individuals) than deeper 
layers (489 individuals) and hosted 72% of all species (25 out of 38 genera). Bac-
terivorous nematodes showed the strongest decline with depth, being only 42% as 
likely to occur in subsoil compared to topsoil.

Different feeding groups showed distinct distribution patterns. While 83.3% 
of bacterivores lived in soil and all predators were exclusively soil-dwelling, om-
nivorous nematodes showed no preference for particular depths. These differenc-
es in feeding group distributions were highly significant (PERMANOVA F=17.8, 
p<0.001).

Similarity analysis showed that while the two soil layers shared most species 
(92% similarity), root communities were quite distinct, sharing only 23-39% of spe-
cies with soil communities. This pattern highlights how different parts of the or-
chard ecosystem support specialized nematode communities adapted to particular 
belowground habitats.

Table 3. Alpha diversity indices of nematode communities across different biotopes in 
peach orchards

Parameter 0-15 cm soil (A) 15-30 cm soil (B) Root system (C)
Taxa 60 52 16
Individuals 1007 489 259
Simpson 0.9757 0.9756 0.8768
Shannon 3.885 3.811 2.252
Pielou 0.8114 0.8695 0.5945
Menhinick 1.891 2.352 0.9942
Margalef 8.5333 8.236 2.699
Berger-Parker 0.05263 0.0409 0.1737

Notes: all indices calculated using PAST 4.0 software (Hammer et al. 2001). Biotopes: 0-15 cm soil (n=52 
samples), 15-30 cm soil (n=52) and root system (n=45). Taxa represents total number of species observed, 
Simpson index (1-D) ranges from 0 (low diversity) to 1 (high diversity), Higher Berger-Parker values 
indicate greater dominance of single species.

Analysis of community similarity using the Jaccard index revealed pronounced 
differences in nematode assemblages across biotopes (Fig. 4). While soil layers (0-
15 cm and 15-30 cm) exhibited high species compositional similarity, the root-as-
sociated communities differed significantly from both soil horizons. This pattern 
suggests strong niche partitioning between belowground compartments, with soil 
strata maintaining relatively homogeneous assemblages while roots support a dis-
tinct nematode fauna.
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Discussion

Our study of nematode communities in Uzbekistan's peach orchards builds on pre-
vious regional research while revealing new ecological insights. The nematode com-
position we observed generally matches earlier findings from Uzbek agricultural 
soils (Boltayev, 1995; Narzullayev et al. 2024), though it differs from communities in 
natural ecosystems (Narzullayev et al. 2023), particularly in the dominance patterns 
of certain genera and the first recorded presence of B. butleri in Uzbekistan, likely 
reflecting how orchard management alters soil conditions (Hodda 2022). The clear 
separation between root-dwelling and soil-dwelling nematodes was striking, with 
plant parasites being 9.2 times more common in roots (OR=9.2, p<0.001), consist-
ent with their parasitic lifestyle (Yeates et al. 1993). The occasional non-parasitic 
nematodes in roots, like Cephalobus parvus, probably benefit from relationships 
with root microbes (Matus-Acuña et al. 2018), while the sporadic fungivores and 
omnivores there likely follow their food sources (Yeates & Bongers 1999).

The relationship between nutrients and nematodes proved complex. While we 
found positive links between N/P/K levels and nematode numbers (r=0.58-0.64; 
Qi et al. 2023), other studies show fertilizers can sometimes harm nematode com-
munities (Al-Hazmi & Dawabah 2014; Zhang et al. 2022), suggesting these effects 
depend on local conditions (Song et al. 2017). These findings have practical impor-

Figure 4. Similarity clustering of nematode communities across biotopes based on Jaccard 
index. 1 – 0-15 cm soil (n=52), 2 – 15-30 cm soil (n=52), 3 – root system (n=45). Heatmap 
intensity reflects similarity values (0-1 scale). Dendrogram shows hierarchical clustering 
(UPGMA method, bootstrap values >80%).



488     Dilnoza M. Nurmatova et al.  /  Acta Biologica Sibirica 11: 477–493 (2025)

tance for Uzbek orchards, where protecting the biologically rich topsoil (Li et al. 
2022), improving organic matter content (Bongers & Bongers 1998), and reducing 
subsoil compaction (Uzokov et al. 2018) could enhance soil health. Future research 
should examine nematode-microbe interactions at the molecular level (Mirzaev et 
al. 2024), compare different fertilization approaches long-term (Zhang et al. 2022), 
and study how irrigation affects these communities across the region (Narzullayev 
et al. 2024). The persistence of diverse nematode populations in these managed or-
chards suggests opportunities to develop farming practices that maintain soil biodi-
versity while supporting production (Yeates et al. 1993; Bongers & Bongers 1998).

Our analysis revealed significant differences in nematode community structure 
between biotopes (roots vs. soil layers) that closely corresponded with measured 
soil properties. Statistical comparisons showed root-associated nematode commu-
nities differed markedly from soil communities (PERMANOVA: F=17.8, p<0.001), 
with endoparasites like Meloidogyne being 9.2 times more likely to occur in roots 
(OR=9.2, p<0.001). Soil communities showed greater diversity overall (Shannon 
H'=3.88 in topsoil vs 2.25 in roots), but exhibited strong vertical stratification – the 
0-15 cm layer contained significantly more nematodes (1007 individuals) than the 
15-30 cm layer (489 individuals; t-test: p<0.01). These distribution patterns closely 
tracked the physicochemical gradients shown in Table 1. The richer, less compact 
topsoil (0-15 cm) with higher organic matter (1.3% vs 0.9%), near-neutral pH (6.9 
vs 5.2), and lower bulk density (1.10 vs 1.32 g cm⁻³) supported greater nematode 
diversity and abundance. Notably, organic matter showed the strongest correlation 
with diversity (R²=0.51), explaining why bacterivores – which comprised 85.7% of 
soil nematodes – declined sharply with depth (418 to 192 individuals). The 30% 
drop in organic matter between layers corresponded with a 54% reduction in bacte-
rivore counts. pH effects were particularly evident for fungivores, which decreased 
by 45% (95 to 52 individuals) as pH dropped from 6.9 to 5.2. This aligns with known 
pH sensitivity of fungal-feeding nematodes (Al-Hazmi & Dawabah 2014; Floren-
ciano et al. 2020; Zhang et al. 2021, 2022).

Bulk density increases (19% between layers) likely restricted nematode move-
ment, contributing to the 2.3× greater impact on abundance versus species com-
position. Denser soils particularly affected larger omnivores and predators (Berg 
& Bengtsson 2007). Nutrient gradients (N, P, K) showed moderate but significant 
correlations with abundance (r=0.58-0.64). The parallel 22-30% decreases in N, P, 
and K concentrations with depth mirrored the 24-54% declines in various trophic 
groups. The exception to these patterns was the omnivorous Eudorylaimus, which 
showed no depth preference (p=0.742) – a possible adaptation to variable condi-
tions that may confer resilience in these managed ecosystems. Meanwhile, the high 
similarity in species composition between soil layers (Sørensen S=0.92) despite 
abundance differences suggests many species can persist across depths when envi-
ronmental thresholds are met.

These findings collectively demonstrate how agricultural soil management cre-
ates distinct habitat filters: roots select for specialized parasites, while soil layers 
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sort nematodes primarily by their trophic requirements and physical tolerances. 
The sharp declines in quality indicators (organic matter, porosity, nutrients) with 
depth create progressively harsher environments, leading to the observed vertical 
stratification of nematode communities. This has important implications for soil 
health monitoring - the sensitivity of nematode abundance to subtle soil changes 
makes them excellent indicators of management impacts, particularly in the critical 
top 15 cm where most biological activity concentrates.

Conclusions

Our study demonstrates that ecological and trophic characteristics of nematode 
communities provide more meaningful insights into their diversity and assemblage 
patterns in peach agroecosystems than taxonomic composition alone. The clear 
stratification of nematode communities across soil depths, coupled with distinct 
community structures between rhizosphere and root biotopes, underscores the im-
portance of environmental filtering in shaping functional nematode diversity. The 
identification of Butlerius butleri as a new record for Uzbekistan further highlights 
the need for continued biodiversity surveys in understudied agroecosystems. Key 
findings suggest that soil physicochemical properties (particularly organic matter 
content, pH, and bulk density) serve as primary drivers of nematode community 
structure; trophic group composition responds more sensitively to environmental 
gradients than taxonomic composition; agricultural intensification appears to favor 
particular functional groups (e.g., plant-parasitic nematodes) while reducing over-
all community complexity. These results emphasize the value of ecological indices 
over purely taxonomic approaches in understanding soil nematode communities. 
Future research should focus on long-term monitoring of trophic group dynam-
ics under different management regimes, molecular characterization of nematode-
microbe interactions, and quantitative assessment of ecosystem services provided 
by different functional groups.
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