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Abstract

Biodiversity plays a crucial role in maintaining the stability of both ecosystems (biocenoses) and in-
dividual trees, as it enhances resistance to biotic and abiotic stressors. This study focuses on the phyl-
losphere fungal communities of Larix sibirica Ledeb. and their role in host resilience under combined
stresses from the root pathogen Porodaedalea niemelaei M. Fisch. and technogenic pollution. Samples
were collected from four groups of trees: infected with the root pathogenic fungus P. niemelaei, exposed
only to technogenic pollution, subjected to both P. niemelaei infection and technogenic pollution, and
control trees, which were neither infected nor affected by pollution. DNA was amplified, sequenced,
and analyzed using Illumina sequencing technology, yielding 598,891 raw ITS sequences. Varying de-
grees of larch needle necrosis were observed across the groups, likely influenced by different microbial
genera under specific environmental conditions. In samples infected with P. niemelaei, Fusarium and
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Alternaria dominated, whereas in the group exposed to both P. niemelaei and technogenic pollution,
Valsa and Cytospora were the most represented. Notably, the latter group also exhibited a reduced
number of unique taxa compared to others, though further studies are needed to confirm statistical
significance. The dominant pathogenic genera detected — Fusarium, Alternaria, Valsa, and Cytospora
- likely interact with other fungi such as Exobasidium, Ophiognomonia, Sarocladium, Phomopsis, and
Taphrina, exacerbating damage and altering the microbiome, particularly under pollution-induced
stress.
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Introduction

Of the various factors influencing the equilibrium of forest ecosystems in the Arc-
tic, the most crucial is the predominant presence of larch (Larix spp.). These spe-
cies demonstrate remarkable biological resilience and a strong capacity to extend
their range, even in the most extreme climatic conditions. Larch species is typically
recognized for its tolerance to pests, diseases, and abiotic stressors, particularly in
Nordic environments where it has a relatively recent introduction and limited co-
evolution with native pests and pathogens. The species' resilience is largely attrib-
uted to its broad heartwood, thick latewood rings, and the high concentration of
secondary metabolites in its stem and deciduous foliage (Jalkanen 2016; Fakhrutdi-
nova et al. 2017). However, the numerous industrial enterprises of the Norilsk In-
dustrial Region (NIR) have triggered an environmental crisis in the Siberian Arctic
forest. The NIR encompasses a wide range of products, resulting in a diverse array
of harmful emissions from its enterprises. The total mass of waste exceeds 1 billion
tons, covering more than 6,000 hectares. NIR enterprises account for 78% of harm-
ful emissions in the Krasnoyarsk Territory (Bogorodskaya et al. 2012; Yurkevich
et al. 2021). The most harmful pollutants include sulfur and several heavy metals:
copper, nickel, cobalt, and lead. Sulfur dioxide contributes the most to environmen-
tal pollution in the NIR, accounting for 96-98% of all emissions in recent years.
The intensive industrial exploitation of forest-tundra zones in European Russia,
utilizing outdated and environmentally harmful technologies, has inevitably led to
widespread degradation of natural ecosystems, destruction of forest habitats, loss of
their ecological stabilization functions, and an increased incidence of pathogenic
organisms (Ziganshin et al. 2017; Bobushkina et al. 2018; Kirdyanov et al. 2020;
Kirpotin et al. 2021; Kharuk et al. 2023a; Kharuk et al. 2023b). The basidiomycete
tungus Porodaedalea niemelaei M. Fisch. is widely distributed across Siberia in per-
mafrost regions. The uniqueness of this phytopathogen lies in its ability to maintain
high aggressiveness even under extreme low-temperature conditions. The prolifera-
tion of P. niemelaei leads to widespread clusters of declining trees and windthrown
larches, characterized by corrosive heart rot. Root rot is pervasive throughout the
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area, affecting not only mature larches but also saplings (Litovka et al. 2017; Pavlov
et al. 2018). In addition, over the past decade, larch forests on the Taimyr Penin-
sula have experienced widespread needle necrosis. The necrosis begins at the tip of
the needles in mid-summer and rapidly spreads throughout the entire needle. The
most intense damage is observed in the lower part of the crown, which suggests that
direct needle burn due to industrial pollution from the Norilsk industrial area can
be ruled out, indicating a potential infectious nature of the disease. This hypothesis
is further supported by the presence of similar patterns in larch forests outside the
zone of anthropogenic pollution (control).

Therefore, the objective of this study was to identify the microorganism (or
group of fungi and bacteria) responsible for this new needle disease in Larix sibirica.
The first step is to understand the microbiome changes that have led to the rapid
needle necrosis under the conditions of climate change and chronic background
atmospheric pollution. Despite the important role of Siberian larch, there are still
few studies focused on its microbiome. Kauhanen et al. (2006) suggested that, since
larch is a unique deciduous conifer whose needles grow for only one season, the
species diversity of endophytic fungi would differ from that of evergreen conifers,
where the rate of infection tends to increase with needle age. They were the first to
publish a report on endophytic fungi in the Siberian larch (Kauhanen et al. 2006).
However, additional studies are required to gain a comprehensive understanding of
the interactions between the microbiome and host trees.

Materials and methods

Sampling

For the study of the Siberian larch microbiome, 17 needle samples were collected
from trees growing in the Norilsk industrial region (NIR). The needles were collect-
ed on August 1-2, 2018, from trees aged 30-50 years according to a factorial design:

o techno: Trees under high air pollution levels and absence of the phytopath-
ogenic fungus P. niemelaei in the trunk wood (location: 69.32°N, 88.30°E ).

o inf&tech: Trees affected by P. niemelaei under high air pollution levels (loca-
tion: 69.32°N, 88.30°E).

o infected: Trees under background air pollution levels but affected by Poro-
daedalea niemelaei M. Fisch (location: 69.34°N 86.87°E).

o control: Trees under background air pollution levels and absence of wood-
destroying phytopathogenic fungi in the trunk wood (Boganidskoye Lake
area, 50 km from Norilsk; coordinates: 69.34°N 86.87°E).

In total, 17 trees (L1-L112; W1-W5) were sampled, distributed across four
groups: infected (4 trees), techno (5 trees), inf&tech (4 trees), and control (4 trees).
From each tree, needles were collected from multiple locations within the crown
(upper, middle, and lower branches) to account for potential spatial variability in
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microbial communities. The samples from each tree were pooled to create a com-
posite sample per tree, which was then used for DNA extraction and subsequent
analysis. Samples were collected using sterile tools, placed in sterile containers, and
stored at —20°C until DNA extraction.

The presence of P. niemelaei infection was determined by extracting cores from
preselected trees showing signs of heartwood rot and isolating pure fungal cultures.
The sampling sites were characterized by a subarctic climate, with short, cool sum-
mers and long, extremely cold winters. Figure 1 illustrates the state of trees within
the study sites.

Figure 1. Siberian larch in the study areas: general view of an affected tree (A); shoots with
needles showing mild (B) and severe (C) degrees of damage; heartwood decay and the fruit-
ing body of the fungus Porodaedalea niemelaei (D); damage to the central root of the larch
caused by the pathogenic effects of P. niemelaei (E).
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In 2018, the growing period in Norilsk was marked by average monthly temper-
atures ranging from 5°C to 14°C. During the winter months, temperatures averaged
between —27°C and —23°C, highlighting the region's severe subarctic climate. The
total annual rainfall for the year was approximately 585 mm, with most precipita-
tion concentrated in the summer. These weather patterns are characteristic of No-
rilsk, where the climate is defined by brief, cool summers and prolonged, intensely
cold winters. The climatic data were obtained from the historical weather records
available at http://www.pogodaiklimat.ru/history/23078.htm.

Extraction of DNA and Sequencing

DNA was extracted from the samples using the MACHEREY-NAGEL NucleoSpin
Soil kit (MACHEREY-NAGEL, Germany) following the manufacturer's instruc-
tions. The quality of the extracted DNA was assessed by electrophoresis in a 1% aga-
rose gel, while its concentration was measured using Qubit (Life Technologies) and
Nanodrop (Thermo Fisher Scientific). The ITS2 region of fungal ribosomal operons
was amplified using the ITS1F/ITS2 primers (GCATCGATGAAGAACGCAGC/
TCCTCCGCTTATTGATATGC), which included Illumina adapter sequences,
linkers, and a barcodes. The 15 pL PCR reaction mixture contained 10 ng of DNA
template, 5 uM of each primer (forward and reverse), 2 nM of each deoxynucleo-
side triphosphate (Life Technologies), and 0.5-1 unit of Q5° High-Fidelity DNA
Polymerase (NEB, USA). The reaction mixture was denatured at 94°C for 1 minute,
followed by 35 cycles of amplification: denaturation at 94°C for 30 seconds, anneal-
ing at 50°C for 30 seconds, and extension at 72°C for 30 seconds. The final elonga-
tion was performed at 72°C for 3 minutes. PCR products were purified using the
AMPure XP system (Beckman Coulter, USA) in accordance with Illumina's recom-
mendations. Library preparation was conducted according to the MiSeq Reagent
Kit Preparation Guide (Illumina). Sequencing was performed on the Illumina MiS-
eq platform (Illumina, USA) using the MiSeq® Reagent Kit v3 (600 cycle), which
supports paired-end reads (2x300 base pairs), strictly following the manufacturer's
protocol.

Bioinformatics analysis

Sequencing data were processed in RStudio using the DADA2 (Callahan et al. 2016)
package version 1.28.0. Primer removal was performed with CUTADAPT version
1.15 (Martin 2011), following the removal of ambiguous bases (Ns) from the reads
to prevent errors in downstream analyses. Quality profiles were inspected, and qual-
ity filtering was applied with the parameters truncLen=c(220,190), maxN=0, max-
EE=8, truncQ=8, rm.phix=TRUE, minLen=50, which were selected based on pre-
liminary quality profile inspections to balance read length and error rates. Chimeric
sequences were identified and removed using the DADA?2 algorithm to eliminate
artifacts generated during PCR amplification. Taxonomy was assigned using the
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assignTaxonomy method with the ITS UNITE database for fungal sequences (Kal-
jalg et al. 2020; Abarenkov et al. 2024) version 25.07.2023, using default parameters
and enabling the tryRC = TRUE option to ensure comprehensive identification by
considering both forward and reverse complement sequences. Diversity metrics,
including alpha diversity (e.g., Shannon index, observed species) and beta diversity
(e.g., Bray-Curtis dissimilarity), were calculated using the VEGAN (Oksanen et
al. 2024) and PHYLOSEQ (McMurdie and Holmes 2013) packages. Visualizations
were performed with the FANTAXTIC (Teunisse 2022) and METACODER (Foster
et al. 2017) to explore taxonomic composition and hierarchical relationships, while
ggplot2 was used for creating publication-quality plots.

For investigating the functions of the fungal community, FUNGuild (Nguyen
et al. 2016) and FungalTraits (Polme et al. 2020; Tanunchai et al. 2022) were used
for the identification of functional groups (guilds) in all groups of samples. The re-
sulting datasets were categorized into three trophic modes based on fungal feeding
strategies: symbiotrophs (mutualistic relationships with plants), saprotrophs (de-
composers of organic matter), and pathotrophs (pathogens).

Results

Fungal Taxonomic Richness and Dominant Species

In total, 598,891 raw ITS sequences were obtained from the DNA of needle sam-
ples. There were 287,441 complete ITS sequences that were recovered from 17 sam-
ples and represented 155 ASVs after the low-quality, singletons, and non-fungal
sequences were eliminated. As shown in the nested bar plot (Figure 1), Ascomycetes
were highly dominant in all groups, comprising between 85.2% and 99% of the total,
with the genera Alternaria, Cladosporium, and Eustilbum being the most prevalent.
Basidiomycetes accounted for 1.5% to 13.8% across all groups and were represented
by the genera Phaeotremella, Phyllotopsis, and Porotheleum. In some groups, Rozel-
lomycota (inf&tech and infected) and Chytridiomycota (inf&tech) were detected,
but their abundance was less than 0.1% (Figure 2). The most prevalent ASVs identi-
fied across all groups were assigned as Alternaria eichhorniae Nag Raj & Ponnappa,
Cladosporium herbarum (Pers.) Link, and Eustilbum aureum (Pers.) Seifert & S.E.
Carp. (Suppl. material 1: Table S1).

infected:

In the group infected with P. niemelaei, the dominant classes of the phylum Asco-
mycota are Sordariomycetes and Dothideomycetes. Among Sordariomycetes, the
genus Fusarium is predominant, represented by Fusarium nirenbergiae L. Lombard
& Crous and Fusarium chlamydosporum Wollenw. & Reinking. These species are
phytopathogens and are absent in other sample groups. Dothideomycetes are also
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represented by pathogenic species of the genus Alternaria (Alternaria metachro-
matica E.G. Simmons and A. eichhorniae) as well as saprotrophs of the genus Cla-
dosporium. Based on relative abundance, the dominant ASVs were identified as
Alternaria eichhorniae (19.8%), Fusarium sp. (15.2%), Fusarium chlamydosporum
(7.5%), Cladosporium cladosporioides (Fresen.) G.A. de Vries (6.0%), and Clad-
osporium herbarum (5.7%) (Figure 3A, Suppl. material 1: Table S1).

control nf&tech
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Figure 2. A bar plot of the most abundant fungal phyla and the most represented genera
within these phyla, found in the Siberian larch needle samples.

inf&tech:

In the community of the group subjected to both P. niemelaei infection and tech-
nogenic pollution, the dominant classes remain the same as in the infected group
— Sordariomycetes and Dothideomycetes. However, unlike the infected group, Sor-
dariomycetes are predominantly represented by phytopathogens from the family
Valsaceae (Cytospora and Valsa). Dothideomycetes are characterized by pathogenic
species of the genus Alternaria. The most abundant sequences were assigned to
Cytospora sp. (51.7%), Valsa sordida Nitschke (22.1%), A. metachromatica (6.9%),
an unidentified member of Ascomycota (2.8%), and Cadophora sp. (2.6%) (Figure
3B, Suppl. material 1: Table S1).
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techno:

In the group subjected exclusively to technogenic influence, the predominant class-
es within the phylum Ascomycota were Dothideomycetes and Leotiomycetes, with
the most abundant genera identified as Alternaria, Cladosporium, and Eustilbum.
Among Basidiomycota, the dominant classes were Agaricomycetes and Tremello-
mycetes. In terms of relative abundance, the leading taxa in this group were Al-
ternaria eichhorniae (13.7%), Eustilboum aureum (10.9%), Cladosporium herbarum
(10.6%), an unidentified representative of Ascomycota (5.8%), and Sordariomycetes
(5.7%) (Figure 3C, Suppl. material 1: Table S1).

control:

In the control group, the most represented classes of Ascomycota were Dothide-
omycetes, Eurotiomycetes, and Sordariomycetes. Among Dothideomycetes, the
dominant genera were Perusta and Parafenestella. The primary representative of the
class Eurotiomycetes was the genus Phaeomoniella, while the most significant ge-
nus within Sordariomycetes was Cytospora. Basidiomycota were represented by the
classes Agaricomycetes and Tremellomycetes, with the genus Peniophora being the
most abundant among them. In terms of relative abundance, the most prevalent
taxa were the non-pathogenic species Perusta inaequalis Egidi & Stielow (15.2%),
an unidentified representative of Ascomycota (14.7%), Peniophora polygonia (Pers.)
Bourdot & Galzin (9.3%), Phaeomoniella sp. (9.1%), and Cytospora sp. (8.7%). Path-
ogenic species such as Parafenestella alpina Jaklitsch & Voglmayr and A. eichhorniae
were also detected, though their relative abundance was low (Figure 3D, Suppl. ma-
terial 1: Table S1).

Microbial diversity

In all groups, alpha diversity metrics such as 'Observed', '‘Chaol’, 'Shannon', 'Simp-
son', 'InvSimpson' and 'Fisher' were measured (Suppl. material 3: Table S3). The
Kruskal-Wallis test was implemented to compare these metrics across the groups.
No significant differences were found for 'Observed', 'Chaol’, 'Shannon,  and 'Fisher
(Figure 4A). For the 'Simpson' and 'InvSimpson' metrics, the Kruskal-Wallis test
rejected the null hypothesis with a p-value of 0.04626; however, the post-hoc Dunn
test did not confirm significant differences between any of the groups (Table 1).
Multidimensional scaling (or principal coordinate analysis; PCoA) on microbial
abundance data didn't show prominent clustering among groups (Figure 4B).

Functional Prediction Analysis

The analysis of predicted fungal functional communities revealed that the com-
munities in all groups were predominantly represented by saprotrophs and patho-
gens. The proportion of saprotrophs exceeded that of pathogens in the control and
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technogenic impact groups, whereas in the group infected with P. niemelaei and the
group exposed to both P. niemelaei infection and technogenic impact, the propor-
tion of pathogens markedly exceeded that of saprotrophs and all other functional
groups (Figure 5, Suppl. material 2: Table S2). In the inf&tech group, plant patho-
gens account for 91.2%, with less than 8% of saprotrophs, whereas in the infected
group, plant pathogens make up 61%, saprotrophs 16.9%, and multifunctional or-
ganisms 9%. The proportions of saprotrophs and pathogens in the techno and con-
trol groups are nearly identical, with both groups comprising 45-47% saprotrophs
and 25-27% plant pathogens.

The main pathogenic genera identified include Alternaria, Fusarium, Cytospora,
Valsa and others, as illustrated in Figure 7. In the infected group, Alternaria and
Fusarium are the dominant pathogens, while less abundant genera include Bry-
ochiton and Stagonospora. In the inf&tech group, the predominant pathogens are
Cytospora and Valsa. Additionally, Alternaria and Fusarium are present, along with
other genera such as Exobasidium, Ophiognomonia, Sarocladium, Betamyces, Taph-
rina and Venturia. In the techno group, the identified pathogens include Alternaria,
Bryochiton, Pyrenochaeta, and Phomopsis. In the control group, a diverse range of
pathogenic genera is present in low abundance, with Phaeomoniella and Cytospora
being the most abundant (Figure 6, Suppl. material 2: Table S2).
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Figure 3. The heat tree format illustrates absolute abundances across taxonomic ranks,
from phylum to genus, highlighting the top 20 taxa for each group. Node color represents
the fungal load within a group, while node size facilitates comparisons between groups.
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(B) for fungal communities associated with the Siberian larch phyllosphere. The two princi-
pal coordinates in the PCoA explain approximately 37% of the variation.

Table 1. Pairwise Comparison of Groups by Simpson Metric Using Post-hoc Dunn Test

Comparison Z P.unadj P.adj

control-inf&tech 1.7503501 0.08005792 0.16011584
control-infected -0.560112 0.575403023 0.69048363
inf&tech-infected -2.3104621 0.020862582 0.06258775
control-techno -0.7527727 0.451586543 0.67737981
inf&tech-techno -2.5978037 0.009382212 0.05629327

infected-techno -0.1623627 0.871020219 0.87102022
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Ecological Role
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Discussion

The needles of L. sibirica support a diverse fungal community, primarily composed
of Ascomycetes, a group commonly found in conifer needle tissues (Oono et al.
2015; Wiirth et al. 2019; Ata et al. 2022; Agan et al. 2021). Although no significant
differences were observed between groups in diversity indices, a higher number
of identified taxa was recorded in the control and inf&tech groups, whereas the
infected group and the group exposed to technogenic impact were characterized
by a lower number of taxa. A decrease in the number of taxa in groups exposed to
infection or technogenic impact individually may indicate their specific effects on
biodiversity. In the inf&tech group, both factors may potentially neutralize each
other or create a unique ecological niche that allows for the preservation of a greater
number of species. Both infected groups displayed an elevated relative abundance
of pathogenic fungi compared to uninfected groups. However, regarding the num-
ber of detected pathogenic taxa, the control group was not inferior to, and even
slightly exceeded, the infected groups, potentially indicating a shift in community
composition favoring pathogenic species under pathogenic pressure. Notably, in the
infected group, dominant pathogens were primarily species of genera Fusarium and
Alternaria, whereas in the inf&tech group, Valsa and Cytospora were predominant,
suggesting that additional environmental factors may modulate the prevalence and
activity of specific pathogens.

Many important forestry and agricultural species are infected by the cosmopoli-
tan fungi Alternaria and Fusarium. Due to their widespread distribution, there is
global interest in gaining a better understanding of various pathogenic species and
strains. Fusarium is one of the most studied fungal genera and one of the most eco-
nomically significant in the world (Rampersad 2020; Dobbs et al. 2024). Among the
diseases of coniferous species caused by the genus Fusarium, the most significant
is pine pitch canker, caused by Fusarium circinatum Nirenberg & O'Donnell. It is
an example of a new invasive disease in Europe and one of the most damaging pine
diseases in the world (Elvira-Recuenco et al. 2020; Amaral et al. 2022).

The genus Alternaria, belonging to the phylum Ascomycota, is also widespread
and includes pathogenic, saprophytic, and endophytic species. Necrotrophic phy-
topathogens of the genus Alternaria are globally prevalent and have a substantial
impact on agricultural and forest ecosystems (Ozkilinc et al. 2018; Ali et al. 2023).
Zhang M. J. et al. (2023) reported the discovery of a new needle blight disease in
conifers caused by Alternaria alternata (Fr.) Keissl. Through detailed morphological
analysis and molecular identification, supported by phylogenetic analysis of mul-
tiple gene sequences, they confirmed A. alternata as the pathogen responsible for
this disease on Bunge’s pine (Pinus bungeana Zucc. ex Endl.) in China. This marks
the first documentation of A. alternata infecting P. bungeana (Zhang et al. 2023).
Among our model trees, sample W5 stands out with 80% needle damage and no
new growth, which is characteristic of the genus Larix. A possible reason lies in the
abundance of the highly pathogenic fungus A. metachromatica within the studied
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microbiome. The pathogenicity of A. metachromatica has been confirmed through
studies on a range of cultures (Bashir et al. 2014; Al-Lami et al. 2018; Al-Lami et al.
2019; Florea and Puia 2020).

Both Cytospora and Valsa are harmful ascomycetes that belong to the Valsaceae
family (Diaporthales, Sordariomycetes). Valsa canker is one of the most prevalent
canker diseases. Due to their opportunistic nature, species of Cytospora thrive in
trees that have been weakened by late frost, drought, or bark damage from oth-
er pathogens. Cytospora, with its broad host range, is one of the most significant
pathogenic fungi affecting both coniferous and hardwood trees globally. The stem
cankers and dieback it causes lead to host plant death or weakened growth, result-
ing in major ecological and economic losses. In mature conifers, cankers caused by
Cytospora are usually found on the lowest branches and seldom spread to the trunk
(Adams et al. 2005; Adams et al. 2006; Yin et al. 2015; Pan et al. 2018; Kepley and
Jacobi 2000; Pan et al. 2021; Lin et al. 2023; Lin et al. 2024).

Frascella A. et al. (2024) reported a high abundance of species from the genera
Valsa, Cytospora (including the anamorphs of Valsa), and Rhizosphaera on the nee-
dles of Abies nebrodensis (Lojac.) Mattei. These fungi were predominant on both
reddened and green needles. The authors propose that these species likely function
as endophytes, reactivating growth when needles are subjected to stress factors such
as wind, hail, or mechanical damage, and do not pose a direct biotic threat to A.
nebrodensis. The observed needle disorders are primarily attributed to the harsh
environmental conditions characteristic of this relic species' habitat. The presence of
fungi on both symptomatic and asymptomatic needles suggests that A. nebrodensis
has adapted to its modified environment and demonstrates resilience to these con-
ditions (Frascella et al. 2024).

Among other noteworthy pathogenic fungal genera identified in our study,
Exobasidium stood out. Species of the genus Exobasidium are known to cause leaf
spots on blueberry, cranberry, and other Vaccinium species (Brewer et al. 2014). Ad-
ditionally, tea plants are prone to blister blight disease caused by Exobasidium (Han
et al. 2024; Zhou et al. 2024).

The genus Ophiognomonia encompasses leaf-associated fungi that exhibit di-
verse ecological roles, functioning as endophytes, pathogens, or saprobes on host
plants belonging to the families Rosaceae, Betulaceae, Malvaceae, Fagaceae, Laura-
ceae, Juglandaceae, Salicaceae, Platanaceae, and Sapindaceae. Comprehensive stud-
ies and collections have demonstrated that this species-rich genus has a cosmo-
politan distribution, with a primary occurrence in temperate regions and a smaller
representation in subtropical zones (Walker et al. 2012).

The majority of species within the genus Sarocladium are saprophytic fungi in-
habiting soil or plant pathogens. Sarocladium strictum (W. Gams) Summerb., ini-
tially recognized as an endophyte, has later been identified as a pathogen in maize
crops, causing symptoms such as chlorosis, leaf and stem necrosis, plant barrenness,
and wilting. This species has also been reported to induce diseases in strawberry
plants. Sheath rot in rice is linked to S. oryzae (Sawada) W. Gams & D. Hawksw., S.
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sparsum J.H. Ou, G.C. Lin & C.Y. Chen, and S. attenuatum W. Gams & D. Hawksw.;
in Bangladesh, S. oryzae has also been found to be the causative agent of bamboo
blight. Correspondingly, a secondary metabolite known to inhibit rice leaf blast, ce-
rulenin, is also produced by this species. Furthermore, S. kiliense (Griitz) Summerb.
has been identified for the first time in India as a stalk rot pathogen in maize (Hou
et al. 2019; Peeters et al. 2020; Harish et al. 2024).

Microfungi of considerable phytopathological significance, with a wide variety
of host associations and a worldwide distribution, are found in the genus Phomopsis.
Climate, host plant susceptibility, and the range of regions studied in biodiversity
studies all affect the taxa's prevalence. Despite its low average annual temperatures,
the Scandinavian Peninsula (Finland and Sweden) has been home to a number of
species. In North America, pathogenic species infecting conifers (Phomopsis occul-
ta Traverso), junipers (Phomopsis juniperivora G.G. Hahn), blueberries (Phomop-
sis vaccinii Shear; current name Diaporthe vaccinii Shear), grapevines (Phomopsis
viticola (Sacc.) Sacc.; current name Diaporthe ampelina (Berk. & M.A. Curtis) R.R.
Gomes, Glienke & Crous), and elms (Phomopsis oblonga (Desm.) Traverso; current
name Diaporthe eres Nitschke) are found (Udayanga et al. 2011; Mihaescu et al.
2021). Notably, Phomopsis species can cause Tip Blight (Blalock and Baysal-Gurel
2015; Behnke-Borowczyk et al. 2020).

Taphrina species cause the tumor-like plant structure, infection symptoms in-
clude leaf spots, leaf curl, deformed fruits, and witches’ brooms (Tsai et al. 2014).
In Siberian forests and urban areas, M. Tomoshevich et al. documented thirteen
years of observations on foliar fungal pathogens that target woody broadleaved spe-
cies from Europe and Eurasia. They discovered that fruit deformation was linked to
Taphrina pruni Tul. (Tomoshevich et al. 2013). Taphrina carpini (Rostr.) Johanson is
a species which have been reported from studies on Norway spruce needle commu-
nities and can be a member of normal phyllosphere fungal communities (Elfstrand
et al. 2020).

Other species of the genus Porodaedalea are of significant interest to research-
ers. For instance, Wojciech Szewczyk et al. conducted a study aimed at investigat-
ing fungi inhabiting knotwood of Pinus sylvestris L. infected by Porodaedalea pini
(Brot.) Murrill. Their findings revealed that the fungal community primarily con-
sisted of endophytes, saprotrophs, and lichens. The most frequently identified gen-
era included Coniochaeta, Lecanora, Infundichalara, Rhinocladiella and Sarea. They
discovered that in pines impacted by P. pini, Coniochaeta hoffmannii (].EH. Beyma)
Z.U. Khan, Gené & Guarro and Coniochaeta fodinicola Vazq.-Camp. were the most
prevalent. The pathogen effectively competes with certain fungal species, according
to the authors, and does not impede the growth of survivors (Szewczyk et al. 2017).
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Conclusions

A total of 598,891 raw ITS sequences were obtained from larch needle samples.
Sequences were clustered into 155 ASVs for fungal taxa. The fungal community was
mainly represented by Ascomycetes and Basidiomycetes. The dominant pathogenic
tungi included Fusarium, Alternaria, Valsa, and Cytospora. These pathogens may
interact with other species from the genera Exobasidium, Ophiognomonia, Saroclad-
ium, Phomopsis and Taphrina, contributing to damage and microbiome alterations,
especially when combined with the weakening effects of technogenic pollution on
larch. Future research will focus on the isolation of pure fungal cultures and subse-
quent inoculation of plants under controlled conditions to elucidate their specific
role in needle damage.
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