Biochemical and antioxidant characteristics of the soil strain Chlorococcum oleofaciens (Chlorophyceae, Chlorophyta) grown in light, dark and bicarbonate conditions
PDF
XML
ePUB
HTML

Keywords

light
darkening
vitamins
chlorophyll derivatives
bicarbonate
antioxidant enzymes
lipid peroxidation

How to Cite

Yakoviichuk, A. V., Kochubey, A. V., Maltseva, I. A., Matsyura, A. V., Cherkashina, S. V., & Lysova, E. A. (2025). Biochemical and antioxidant characteristics of the soil strain Chlorococcum oleofaciens (Chlorophyceae, Chlorophyta) grown in light, dark and bicarbonate conditions. Acta Biologica Sibirica, 11, 411-447. https://doi.org/10.5281/zenodo.15128676

Abstract

This study aimed to examine the biochemical and antioxidant characteristics of a soil strain of Chlorococcum oleofaciens CAMU MZ–Ch4 (Chlorophyceae, Chlorophyta) when cultured in light, darkness, and a combination of light-bicarbonate and dark-bicarbonate in an acute 96-hour experiment. The study established that cultivation in the dark is accompanied by an increase in the antioxidant status of Chlorococcum oleofaciens CAMU MZ–Ch4 strain cells, which is associated with the accumulation of low-molecular antioxidants and the activation of antioxidant enzymes. Culturing in the dark also causes the accumulation of chlorophyll a, ascorbic acid, astaxanthin, and lipids. But biomass productivity and concentration decreased. Introducing NaHCO3 into the medium inhibits the biosynthesis and accumulation of α-tocopherol, ascorbic acid, phenolic compounds, and chlorophylls both under illuminated and in the dark. The intensity of lipid peroxidation decreases and the activity of antioxidant enzymes increases under light and in the dark conditions with NaHCO3 in the medium.

https://doi.org/10.5281/zenodo.15128676
PDF
XML
ePUB
HTML

References

Aaronson S, Dhawale SW, Patni NJ, Deangelis B, Frank O, Baker H (1977) The cell content and secretion of water-soluble vitamins by several freshwater algae. Archives of Microbiology 112: 57–59. https://doi.org/10.1007/BF00446654

Abalde J, Fabregas J, Herrero C (1991) β-Carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources. Bioresource Technology 38: 121–125. https://doi.org/10.1016/0960-8524(91)90142-7

Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresource Technology 131: 188–194. https://doi.org/10.1016/j.biortech.2012.12.143

Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S (2019) Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition 59: 1880–1902. https://doi.org/10.1080/10408398.2018.1432561

Andriopoulos V, Gkioni MD, Koutra E, Mastropetros SG, Lamari FN, Hatziantoniou S, Kornaros M (2022) Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants 11: 1320. https://doi.org/10.3390/antiox11071320

Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51: 163–190. https://doi.org/10.1007/s11099-013-0021-6

Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in mariculture. Journal of Applied Phycology 4: 205–215. https://doi.org/10.1007/BF02161206

Canelli G, Tevere S, Jaquenod L, Dionisi F, Rohfritsch Z, Bolten CJ, Neutsch L, Mathys A (2022) A novel strategy to simultaneously enhance bioaccessible lipids and antioxidants in hetero/mixotrophic Chlorella vulgaris as functional ingredient. Bioresource Technology 347: 126744. https://doi.org/10.1016/j.biortech.2022.126744

Chen H-H, Jiang J-G (2017) Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae. Journal of Agricultural and Food Chemistry 65: 8099–8110. https://doi.org/10.1021/acs.jafc.7b03495

Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G (2023) Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochemical & Photobiological Sciences 22: 1733–1789. https://doi.org/10.1007/s43630-023-00407-3

Coniglio S, Shumskaya M, Vassiliou E (2023) Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology 12: 279. https://doi.org/10.3390/biology12020279

Correia N, Pereira H, Schulze PSC, Costa MM, Santo GE, Guerra I, Trovão M, Barros A, Cardoso H, Silva JL, Gouveia L, Varela J (2023) Heterotrophic and Photoautotrophic Media Optimization Using Response Surface Methodology for the Novel Microalga Chlorococcum amblystomatis. Applied Sciences 13: 2089. https://doi.org/10.3390/app13042089

Da Silva Ferreira V, Sant’Anna C (2017) Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology 33: 20. https://doi.org/10.1007/s11274-016-2181-6

De Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters 29: 1349–1352. https://doi.org/10.1007/s10529-007-9394-6

Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C (2020) Challenging microalgal vitamins for human health. Microbial Cell Factories 19: 201. https://doi.org/10.1186/s12934-020-01459-1

Del Río E, García-Gómez E, Moreno J, G. Guerrero M, García-González M (2017) Microalgae for oil. Assessment of fatty acid productivity in continuous culture by two high-yield strains, Chlorococcum oleofaciens and Pseudokirchneriella subcapitata. Algal Research 23: 37–42. https://doi.org/10.1016/j.algal.2017.01.003

Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272: 717– 722. https://doi.org/10.1016/j.aquaculture.2007.07.213

Edmundson SJ, Huesemann MH (2015) The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Research 12: 470–476. https://doi.org/10.1016/j.algal.2015.10.012

Eghbali Babadi F, Boonnoun P, Nootong K, Powtongsook S, Goto M, Shotipruk A (2020) Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food and Bioproducts Processing 123: 296–303. https://doi.org/10.1016/j.fbp.2020.07.008

Fatini MA, Basri EM, Wan Maznah WO (2021) Effect of different nitrogen sources on cell growth and biochemical compositions of Chlorococcum sp. cultivated under laboratory conditions. IOP Conference Series: Earth and Environmental Science 711: 012010. https://doi.org/10.1088/1755-1315/711/1/012010

Fawzy MA, Abdel-Wahab DA, Hifney AF (2017) Physiological and biochemical responses of the green alga Pachycladella chodatii (SAG 2087) to sodicity stress. Egyptian Journal of Basic and Applied Sciences 4: 30–36. https://doi.org/10.1016/j.ejbas.2016.11.001

Gabriëls M, Cirunay J, Alafandy M, Brisaert M, De Taevernier M, Camu F, Plaizier-Vercammen J (2000) Determination of Hydroperoxides in Liposomes by the Modified IDF and the Modified Tiron Methods. Journal of AOAC INTERNATIONAL 83: 589–596. https://doi.org/10.1093/jaoac/83.3.589

Gao Y, Feng J, Lv J, Liu Q, Nan F, Liu X, Xie S (2019) Physiological Changes of Parachlorella Kessleri TY02 in Lipid Accumulation under Nitrogen Stress. International Journal of Environmental Research and Public Health 16: 1188. https://doi.org/10.3390/ijerph16071188

Goh LP, Loh SP, Fatimah MY, Perumal K (2009) Bioaccessibility of Carotenoids and Tocopherols in Marine Microalgae, Nannochloropsis sp. and Chaetoceros sp. Malaysian Journal of Nutrition 15: 77–86.

GOST EN 12822-2020. Food products. Determination of vitamin E (α-, β-, γ-, δ-tocopherols) by high-performance liquid chromatography. RST, Moscow, 2022. https://gostassistent.ru/doc/3c4fa315-b23a-42bd-a894-81ed5a583d68 [In Russian]

GOST Р 57455-2017. Guidelines for the application of criteria for the classification of chemical hazards by their environmental effects. Acute aquatic toxicity. RST, Moscow, 2017. https://rosgosts.ru/file/gost/13/020/gost_r_57455-2017.pdf [In Russian]

Hamza TA, Hadwan MH (2020) New Spectrophotometric Method for the Assessment of Catalase Enzyme Activity in Biological Tissues. Current Analytical Chemistry 16: 1054–1062. https://doi.org/10.2174/1573411016666200116091238

He M, Ding N-Z (2020) Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Frontiers in Plant Science 11: 562785. https://doi.org/10.3389/fpls.2020.562785

Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: A Review of its Chemistry and Applications. Critical Reviews in Food Science and Nutrition 46: 185– 196. https://doi.org/10.1080/10408690590957188

Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annual Review of Plant Biology 57: 55–77. https://doi.org/10.1146/annurev.arplant.57.032905.105212

Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C (2023) Unlocking microalgal host – exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Frontiers in Bioengineering and Biotechnology 11: 1296216. https://doi.org/10.3389/fbioe.2023.1296216

Jayasankar R, Valsala KK (2008) Influence of different concentrations of bicarbonate on growth rate and chlorophyll content of Chlorella salina. Journal of the Marine Biological Association of India 50: 74–78.

Jungnick N, Ma Y, Mukherjee B, Cronan JC, Speed DJ, Laborde SM, Longstreth DJ, Moroney JV (2014) The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces. Photosynthesis Research 121: 159–173. https://doi.org/10.1007/s11120-014-0004-x

Kim G-Y, Roh K, Han J-I (2019) The use of bicarbonate for microalgae cultivation and its carbon footprint analysis. Green Chemistry 21: 5053–5062. https://doi.org/10.1039/C9GC01107B

Kosanić M, Ranković B, Stanojković T (2015) Biological activities of two macroalgae from Adriatic coast of Montenegro. Saudi Journal of Biological Sciences 22: 390–397. https://doi.org/10.1016/j.sjbs.2014.11.004

Kupriyanova EV, Pronina NA, Los DA (2023) Adapting from Low to High: An Update to CO2-Concentrating Mechanisms of Cyanobacteria and Microalgae. Plants 12: 1569. https://doi.org/10.3390/plants12071569

León-Vaz A, León R, Vigara J, Funk C (2023) Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. New Biotechnology 73: 1–8. https://doi.org/10.1016/j.nbt.2022.12.001

Li J, Li C, Lan CQ, Liao D (2018) Effects of sodium bicarbonate on cell growth, lipid ac- cumulation, and morphology of Chlorella vulgaris. Microbial Cell Factories 17: 111. https://doi.org/10.1186/s12934-018-0953-4

Li Y, Miao F, Geng Y, Lu D, Zhang C, Zeng M (2012) Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically. Chinese Journal of Oceanology and Limnology 30: 627–637. https://doi.org/10.1007/s00343-012-1217-5

Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31: 1043–1049. https://doi.org/10.1007/s10529-009-9975-7

Lopes Da Silva T, Moniz P, Silva C, Reis A (2019) The Dark Side of Microalgae Biotechnology: A Heterotrophic Biorefinery Platform Directed to ω-3 Rich Lipid Production. Microorganisms 7: 670. https://doi.org/10.3390/microorganisms7120670

López-Hernández JF, García-Alamilla P, Palma-Ramírez D, Álvarez-González CA, Paredes-Rojas JC, Márquez-Rocha FJ (2020) Continuous Microalgal Cultivation for Antioxidants Production. Molecules 25: 4171. https://doi.org/10.3390/molecules25184171

Mackinder LCM (2018) The Chlamydomonas CO2 ‐concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytologist 217: 54–61. https://doi.org/10.1111/nph.14749

Maltsev YI, Maltseva IA, Kulikovskiy MS, Maltseva SYu, Sidorov RA (2019) Analysis of a new strain of Pseudomuriella engadinensis (Sphaeropleales, Chlorophyta) for possible use in biotechnology. Russian Journal of Plant Physiology 66: 609–617. https://doi.org/10.1134/S1021443719040083

Maltsev YI, Maltseva IA, Maltseva SY, Kulikovskiy MS (2020) Biotechnological potential of a new strain of Bracteacoccus bullatus (Sphaeropleales, Chlorophyta) as a promising producer of omega-6 polyunsaturated fatty acids. Russian Journal of Plant Physiology 67: 185–193. https://doi.org/10.1134/S1021443720010124

Maltseva I, Yakoviichuk A, Maltseva S, Cherkashina S, Kulikovskiy M, Maltsev Y (2024) Biochemical and Antioxidant Characteristics of Chlorococcum oleofaciens (Chlorophyceae, Chlorophyta) under Various Cultivation Conditions. Plants 13: 2413. https://doi.org/10.3390/plants13172413

Marques De Sá JP (Ed.) (2007) Applied Statistics Using SPSS, STATISTICA, MATLAB and R. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71972-4

Mohanta A, Prasad N, Khadim SR, Singh P, Singh S, Singh A, Kayastha AM, Asthana RK (2024) Optimizing light regimes for neutral lipid accumulation in Dunaliella salina MCC 43: a study on physiological status and carbon allocation. World Journal of Microbiology and Biotechnology 40: 82. https://doi.org/10.1007/s11274-024-03893-4

Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A (2015) Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology 31: 1–9. https://doi.org/10.1007/s11274-014-1773-2

Mudimu O, Koopmann IK, Rybalka N, Friedl T, Schulz R, Bilger W (2017) Screening of microalgae and cyanobacteria strains for α-tocopherol content at different growth phases and the influence of nitrate reduction on α-tocopherol production. Journal of Applied Phycology 29: 2867–2875. https://doi.org/10.1007/s10811-017-1188-1

Nezafatian E, Farhadian O, Yegdaneh A, Safavi M, Daneshvar E, Bhatnagar A (2023) Enhanced production of bioactive compounds from marine microalgae Tetraselmis tetrathele under salinity and light stresses: A two-stage cultivation strategy. Bioresource Technology 376: 128899. https://doi.org/10.1016/j.biortech.2023.128899

Olson BJSC (2016) Assays for Determination of Protein Concentration. Current Protocols in Pharmacology 73. https://doi.org/10.1002/cpph.3

Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology 244: 1216–1226. https://doi.org/10.1016/j.biortech.2017.05.058

Pancha I, Chokshi K, Ghosh T, Paliwal C, Maurya R, Mishra S (2015) Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology 193: 315–323. https://doi.org/10.1016/j.biortech.2015.06.107

Pauline JMN, Achary A (2019) Novel Media for Lipid Production of Chlorococcum oleofaciens: A RSM Approach. Acta Protozoologica 58: 31–41. https://doi.org/10.4467/16890027AP.19.003.10834

Peng L, Lan CQ, Zhang Z, Sarch C, Laporte M (2015) Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon. Bioresource Technology 197: 143–151. https://doi.org/10.1016/j.biortech.2015.07.101

Peng L, Zhang Z, Lan CQ, Basak A, Bond N, Ding X, Du J (2016) Alleviation of oxygen stress on Neochloris oleoabundans: effects of bicarbonate and pH. Journal of Applied Phycology 29: 143–152. https://doi.org/10.1007/s10811-016-0931-3

Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research 45: 11–36. https://doi.org/10.1016/j.watres.2010.08.037

Posten C, Feng Chen S (Eds) (2016) 153 Microalgae Biotechnology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-23808-1

Qiang H, Guterman H, Richmond A (1996) Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities. Journal of Phycology 32: 1066– 1073. https://doi.org/10.1111/j.0022-3646.1996.01066.x

Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry 277: 128–134. https://doi.org/10.1016/j.foodchem.2018.10.066

Rayati M, Rajabi Islami H, Shamsaie Mehrgan M (2020) Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production. BioEnergy Research 13: 1235–1245. https://doi.org/10.1007/s12155-020-10144-5

Razygraev AV, Arutiunian AV (2006) [Determination of human serum glutathione peroxidase activity, by using hydrogen peroxide and 5,5’-dithio-bis(2-nitrobenzoic acid)]. Klinicheskaia Laboratornaia Diagnostika 6: 13–16. [In Russian]

Sade N, Del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E (2018) Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany 69: 845–853. https://doi.org/10.1093/jxb/erx235

Safafar H, Van Wagenen J, Møller P, Jacobsen C (2015) Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Marine Drugs 13: 7339–7356. https://doi.org/10.3390/md13127069

Salbitani G, Barone CMA, Carfagna S (2019) Effect of Bicarbonate on Growth of the Oleaginous Microalga Botryococcus braunii. International Journal of Plant Biology 10: 8273. https://doi.org/10.4081/pb.2019.8273

Salbitani G, Bolinesi F, Affuso M, Carraturo F, Mangoni O, Carfagna S (2020) Rapid and Positive Effect of Bicarbonate Addition on Growth and Photosynthetic Efficiency of the Green Microalgae Chlorella Sorokiniana (Chlorophyta, Trebouxiophyceae). Applied Sciences 10: 4515. https://doi.org/10.3390/app10134515

Santhakumaran P, Ayyappan SM, Ray JG (2020) Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Research 47: 101878. https://doi.org/10.1016/j.algal.2020.101878

Santiago-Morales IS, Trujillo-Valle L, Márquez-Rocha FJ, López Hernández JF (2018) Tocopherols, Phycocyanin and Superoxide Dismutase from Microalgae: as Potential Food Antioxidants. Applied Food Biotechnology 5(1): 19–27. https://doi.org/10.22037/afb.v5i1.17884

Sassi KKB, Silva JAD, Calixto CD, Sassi R, Sassi CFDC (2019) Metabolites of interest for food technology produced by microalgae from the Northeast Brazil. Revista Ciência Agronômica 50(1): 54–65. https://doi.org/10.5935/1806-6690.20190007

Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26: 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

Shi T-Q, Wang L-R, Zhang Z-X, Sun X-M, Huang H (2020) Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Frontiers in Bioengineering and Biotechnology 8: 610. https://doi.org/10.3389/fbioe.2020.00610

Singh RP, Yadav P, Kumar A, Hashem A, Avila-Quezada GD, Abd_Allah EF, Gupta RK (2023) Salinity-Induced Physiochemical Alterations to Enhance Lipid Content in Oleaginous Microalgae Scenedesmus sp. BHU1 via Two-Stage Cultivation for Biodiesel Feedstock. Microorganisms 11: 2064. https://doi.org/10.3390/microorganisms11082064

Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A (2022) Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Current Issues in Molecular Biology 44: 6257–6279. https://doi.org/10.3390/cimb44120427

Sirota TV (2012) Use of nitro blue tetrazolium in the reaction of adrenaline autooxidation for the determination of superoxide dismutase activity. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 6: 254–260. https://doi.org/10.1134/S1990750812030134

Sivathanu B, Palaniswamy S (2012) Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedicine & Preventive Nutrition 2: 276–282. https://doi.org/10.1016/j.bionut.2012.04.006

Smerilli A, Orefice I, Corato F, Gavalás Olea A, Ruban AV, Brunet C (2017) Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Environmental Microbiology 19: 611–627. https://doi.org/10.1111/1462-2920.13545

Spalding MH, Ogren WL (1982) Photosynthesis is required for induction of the CO2‐concentrating system in Chlamydomonas reinhardii. FEBS Letters 145: 41–44. https://doi.org/10.1016/0014-5793(82)81202-7

Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87–96. https://doi.org/10.1263/jbb.101.87

Srinivasan R, Mageswari A, Subramanian P, Suganthi C, Chaitanyakumar A, Aswini V, Gothandam KM (2018) Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports 8: 6972. https://doi.org/10.1038/s41598-018-25417-5

Trenkenshu RP (2016) Dynamic model of biotransformation of reserve and structural forms of microalgae biomass in the dark. Issues of modern algology 2(12). http://algology.ru/967 [In Russian]

Umetani I, Janka E, Sposób M, Hulatt CJ, Kleiven S, Bakke R (2021) Bicarbonate for microalgae cultivation: a case study in a chlorophyte, Tetradesmus wisconsinensis isolated from a Norwegian lake. Journal of Applied Phycology 33: 1341–1352. https://doi.org/10.1007/s10811-021-02420-4

Vazquez L, Armada D, Celeiro M, Dagnac T, Llompart M (2021) Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods 10: 2616. https://doi.org/10.3390/foods10112616

Wang J, Ouyang L, Wei L (2023) Novel Insight of Nitrogen Deprivation Affected Lipid Accumulation by Genome-Wide Lactylation in Nannochloropsis oceanica. Journal of Agricultural and Food Chemistry 71: 10107–10123. https://doi.org/10.1021/acs.jafc.3c00122

Wang Y, Stessman DJ, Spalding MH (2015) The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. The Plant Journal 82: 429–448. https://doi.org/10.1111/tpj.12829

White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology 25: 153–165. https://doi.org/10.1007/s10811-012-9849-6

Xia L, Ge H, Zhou X, Zhang D, Hu C (2013) Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Bioresource Technology 144: 261–267. https://doi.org/10.1016/j.biortech.2013.06.112

Yakoviichuk A, Krivova Z, Maltseva S, Kochubey A, Kulikovskiy M, Maltsev Y (2023) Antioxidant Status and Biotechnological Potential of New Vischeria vischeri (Eustigmatophyceae) Soil Strains in Enrichment Cultures. Antioxidants 12: 654. https://doi.org/10.3390/antiox12030654

Yang CM, Chang KW, Yin MH, Huang HM (1998) Methods for the Determination of the Chlorophylls and Their Derivatives. TAIWANIA 43(2): 116–122. https://doi.org/10.6165/tai.1998.43(2).116

Yeh K, Chang J, Chen W (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP‐31. Engineering in Life Sciences 10: 201–208. https://doi.org/10.1002/elsc.200900116

Yuan J-P, Chen F, Liu X, Li X-Z (2002) Carotenoid composition in the green microalga Chlorococcum. Food Chemistry 76: 319–325. https://doi.org/10.1016/S0308-8146(01)00279-5

Zeb A, Ullah F (2016) A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods. Journal of Analytical Methods in Chemistry 2016: 1–5. https://doi.org/10.1155/2016/9412767

Zhang DH, Lee YK (1997) Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology 9: 459–463. https://doi.org/10.1023/A:1007902103419

Zhang DH, Ng YK, Phang SM (1997) Composition and accumulation of secondary carotenoids in Chlorococcum sp. Journal of Applied Phycology 9: 147–155. https://doi.org/10.1023/A:1007926528388

Zuffellato-Ribas KC, Morini S, Picciarelli P, Mignolli F (2010) Extraction and determination of ascorbate and dehydroascorbate from apoplastic fluid of stem of rooted and non-rooted cuttings in relation to the rhizogenesis. Brazilian Journal of Plant Physiology 22: 123–129. https://doi.org/10.1590/S1677-04202010000200006

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...