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Разработан метод окисления регенерированной целлюлозы (вискозы) в системе HNO3–H3PO4–NaNO2, позволя-

ющий получать окисленную регенерированную целлюлозу с содержанием COOH-групп 18–24% в порошковой форме, 
соответствующую по показателям качества требованиям USP, что позволяет использовать ее в качестве биодеградиру-
емого гемостатического материала. Строение окисленных регенерированных целлюлоз с различным содержанием 
COOH-групп подтверждено методами ИК-спектроскопии и элементного анализа, структура образцов и их термическая 
стабильность изучены методами рентгеноструктурного и термогравиметрического (ТГ) анализов соответственно. По-
казано, что дифрактограммы окисленных регенерированных целлюлоз имеют рефлексы, характерные для двух поли-
морфных модификаций: целлюлозы II (характерная для исходной регенерированной целлюлозы) и целлюлозы I. Уста-
новлено, что в ИК-спектре окисленной регенерированной целлюлозы появляется полоса валентных колебаний С=О кар-
боксильной группы при 1731 см-1, интенсивность которой растет с увеличением содержания карбоксильных групп в 
окисленной вискозе. Показано, что степень кристалличности окисленных регенерированных целлюлоз, полученных в 
данной системе, уменьшается пропорционально с увеличением содержания карбоксильных групп в окисленной вискозе, 
при этом не наблюдается полная аморфизация вискозы даже при максимальной степени окисления (24.09% СOOH-
групп). Установлено, что при низкой концентрации катализатора (0.06–0.12%) реакция окисления вискозы имеет ярко 
выраженный автокаталитический характер, а кинетическая кривая – характерный S-образный вид, при этом накопление 
связанного азота проходит через максимум и значительно уменьшается со временем проведения реакции. 
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Введение 

Поиск новых эффективных и безопасных методов получения уже хорошо зарекомендовавших себя 
материалов медицинского назначения, в особенности на основе возобновляемого растительного сырья, к 
которым относится окисленная хлопковая и регенерированная целлюлозы (РЦ), широко используемые в 
медицинской практике вот уже более 60 лет в качестве биодеградируемого кровоостанавливающего сред-
ства [1–10], а в последние десятилетия – и в качестве носителя и пролонгатора низкомолекулярных лекар-
ственных веществ широкого спектра действия [11], является актуальным и в наше время [12–15]. Изделие 
медицинского назначения на основе окисленной целлюлозы под брендом «Surgicel» [16–18] с 1960 г. вы-
пускается одним из лидеров фармацевтической отрасли подразделением «Ethicon» компании «Johnson & 
Johnson». Получение окисленной целлюлозы при этом происходит в растворе галогенорганического 
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растворителя [19] и связано с применением оксида азота (IV), который позволяет достаточно селективно 
окислить гидроксильные группы у С6-атома D-глюкопиранозного цикла до карбоксильных и ввести их до-
статочное количество (не менее 18 мас.%), чтобы кардинально изменить свойства исходной целлюлозы, 
получив продукт с новыми свойствами.  

Цель нашего исследования – разработка способа, позволяющего получить окисленную регенериро-
ванную целлюлозу (ОРЦ) в порошковой форме и соответствующую международным показателям качества, 
предъявляемым к данному медицинскому изделию, при этом не используя оксид азота (IV) и галогенсодер-
жащие органические растворители, используя для этого смесь азотной и фосфорной кислот и катализатор, 
который позволяет синтезировать оксид азота (IV) in situ. 

Экспериментальная часть 

Объект исследований. В качестве объекта исследования использовали регенерированную целлюлозу 
(100% вискозу) в виде бинта медицинского трикотажного трубчатого (регистрационное удостоверение РБ 
№ ИМ-7.107430, ОАО «Лента», Могилев, Беларусь). Все остальные использованные реактивы были квали-
фикации «х.ч.» или «ч.д.а.» и применялись без дополнительной очистки. 

Процесс окисления. В стеклянный реактор V=1 л заливают необходимые количества 65%-ного рас-
твора HNO3 и 85%-ного раствора H3PO4, полученную смесь перемешивают в течение 3 мин и добавляют 
при перемешивании рассчитанное количество катализатора – нитрита натрия. Затем 30 г ткани регенериро-
ванной целлюлозы наматывают на стеклянную цилиндрическую основу диаметром 1 см, помещают в реак-
ционную смесь и закрывают крышкой с предохранительным клапаном (гидромодуль 1 : 18 г/мл). Получен-
ную систему выдерживают при комнатной в течение заданного времени. По окончании реакции ОРЦ уже в 
виде порошкообразных кусочков извлекают из реактора, отделяя реакционную смесь на стеклянном пори-
стом фильтре Шотта (размер пор 160 мкм), и при интенсивном перемешивании промывают в стакане ди-
стиллированной водой (4 раза по 200 мл воды), затем 200 мл 50%-ного водно-этанольного раствора (с от-
жимом на фильтре после каждой промывки) и высушивают в сушильном шкафу при Т=30 °С. В образцах 
окисленной вискозы кальций-ацетатным методом определяют содержание карбоксильных групп [20], мето-
дом Деварда – содержание азота [21], содержание карбонильных групп – согласно [22], а также зольность и 
влажность. 

Ренгентоструктурный анализ. Запись дифракционных кривых проводили на рентгеновском дифрак-
тометре HZG-4A (Carl Zeiss Jena), CuKα излучение (λ=0.15418 нм), Ni-фильтр, поточечная запись. Препари-
рование образцов осуществляли методом холодного прессования полимера в виде монолитных круглых таб-
леток толщиной 2 мм, диаметром 18 мм. (СКотн., %) рассчитывают по методу Ант-Вуоринена по формуле: 

СКотн. = (1-hам./hкр)×100, (1) 

где hам. – высота над нулевой линией минимума дифрактограммы между 13 и 15° (2θ) для целлюлозы II, выра-
женная в условных единицах; hкр.=H-hам., где H – высота над нулевой линией максимума дифрактограммы 
между значениями 19.5 и 22.0° (2θ) для целлюлозы II, вычисленная в тех же самых условных единицах. 

ИК-спектороскопия. Фурье-ИК спектры образцов записывали на Фурье-ИК спектрометре ALPHA 
(BRUKER Optik GmbH) с приставкой НПВО ATR Di через 2 см-1 в диапазоне 4000–400 см-1, количество 
сканирований – 24.  

Термогравиметрический анализ. Процесс термического разложения образцов исследовали на син-
хронном термоанализаторе STA 449C («Netzsch», Германия) (скорость нагрева 10 град⋅мин-1 в динамиче-
ской атмосфере азота со скоростью подачи последнего 22 см3⋅мин-1, масса образца 25–30 мг, эталон – про-
каленный оксид алюминия). 

Результаты и их обсуждение 

Общая схема реакции окисления РЦ в системе HNO3 – H3PO4 – NaNO2 представлена ниже: 
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Когда азотная кислота добавляется в раствор 85%-ной фосфорной кислоты, как правило, окисление 
полисахарида начинается не сразу, а через определенный промежуток времени. Это указывает на автоката-
литический характер реакции, для которой основной характеристикой является время индукции. Автоката-
литическое окисление азотной кислотой достаточно распространено, и хорошо известно, что реакция ини-
циируется присутствием низковалентных кислородсодержащих производных азота таких, как нитрит или 
оксиды азота (II, III). Часто эти примеси изначально могут присутствовать в азотной кислоте, тогда нет 
необходимости их вносить в реакционную смесь в начале реакции окисления. Начальная концентрация этих 
примесей будет определять время индукционного периода данной реакции. Это означает, что, добавляя в 
смесь азотной и фосфорной кислот небольшие количества нитрита натрия, можно реализовать вариант се-
лективного окисления первичных гидроксильных групп целлюлозы под действием оксида (IV) азота, кото-
рый будет образовываться в данной реакционной системе in situ. 

На рисунке 1а представлено влияние исходной концентрации нитрита натрия на скорость окисления 
РЦ. Видно, что если в систему не добавлять катализатор, то реакция окисления вискозы практически не 
идет, что связано с повышенной чистотой исходного реагента – азотной кислоты. Можно заметить, что при 
низкой концентрации нитрита натрия в смеси (0.06–0.12%) реакция носит автокаталитический характер, а 
кривые имеют типичный сигмоидальный вид, при этом обе кривые имеют выраженный индукционный пе-
риод – около 6 и 2 ч соответственно. Увеличение начальной концентрации нитрита натрия до 0.36–0.72% 
меняет не только вид кинетической кривой – реакция уже не является автокаталитической, но в значитель-
ной степени увеличивает начальную скорость накопления карбоксильных групп в РЦ. При этом максималь-
ные значения содержания карбоксильных групп в окисленной вискозе через 16 ч реакции практически не 
меняются независимо от начальной концентрации катализатора.  

На рисунке 1б представлены кинетические зависимости накопления связанного азота в ОРЦ. 
Контроль данного параметра является важным, так как, согласно требованиям USP, содержание свя-

занного азота в окисленной регенерированной целлюлозе не должно превышать 0.5%. Как видно из пред-
ставленных данных, при различных начальных концентрациях катализатора (0.06–0.72%) все кинетические 
кривые окисления вискозы носят экстремальный характер. При этом максимальное содержание азота (0.9–
1.8%) проявляется в образцах ОРЦ, полученной в течение 2–6 ч в зависимости от концентрации нитрита 
натрия. При дальнейшем проведении окисления в данной системе содержание азота резко снижается и в 
конечном итоге не превышает установленной нормы 0.5%. Видно, что максимальное содержание азота в 
окисленной вискозе достигается при минимальной исходной концентрации катализатора, с увеличением 
концентрации нитрита натрия содержание азота уменьшается.  

Влияние исходной концентрации азотной кислоты в системе на скорость окисления регенерирован-
ной целлюлозы показана на рисунке 1в. Видно, что начальная концентрация азотной кислоты в смеси не 
влияет на время индукции (2 ч). Такое поведение характерно для автокаталитических реакций окисления 
спиртов азотной кислотой, так как скорость определяющей стадией является реакция, представленная урав-
нением: RCH2OH + NO+ = RCHO + H+ + HNO. Из представленных на рисунке 1в данных видно, что увели-
чение концентрации азотной кислоты в реакционной смеси в конечном итоге позволяет увеличить скорость 
накопления COOH-групп в окисленной регенерированной целлюлозе, при этом предельное содержание кар-
боксильных групп после 48 ч окисления не меняется. Ранее мы проводили изучение окисления хлопковой 
целлюлозы в данной системе [23] и нужно отметить, что закономерности накопления функциональных 
групп, выявленные для хлопковой целлюлозы, сохраняются и при окислении вискозы, за исключением бо-
лее высокой скорости ее окисления в силу более низкой степени кристалличности. 

В Фурье-ИК-спектрах исходной регенерированной целлюлозы и полученных из нее окисленных об-
разцов с различным содержанием COOH-групп наблюдается широкая полоса поглощения в области 3100–
3500 см-1, соответствующую валентным колебаниям OH-групп, связанных внутри- и межмолекулярными 
водородными связями. Однако эти пики поглощения OH-групп постепенно становятся шире и незначи-
тельно смещаются в область более высоких волновых чисел с увеличением степени окисления 
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регенерированной целлюлозы. Одной из возможных причин этого может быть то, что водородные связи 
между цепями вискозы ослабляются, кристаллическая структура волокон разрыхляется за счет глубокого 
окисления в течение длительного времени. Свидетельством образования карбоксильных групп в макромо-
лекуле вискозы при окислении в системе HNO3 – H3PO4 – NaNO2 служит появление в ИК-спектрах окислен-
ных образцов сильной полосы валентных колебаний С=О с максимумом около 1720 см-1 и увеличением 
интенсивности этой полосы с возрастанием содержания СООH-групп. Окисление первичных гидроксиль-
ных групп у С6 α-D-ангидроглюкопиранозного звена целлюлозы проявляется в уменьшении интенсивности 
полосы деформационных и ножничных колебаний CH2-групп при 893.1 см-1, обусловленной в основном 
колебаниями групп COH у С6. Следует отметить, что в ИК-спектрах окисленной регенерированной целлю-
лозы достаточно четко проявляется структура сложной полосы поглощения в области частот 1200–900 см-1, где 
проявляются валентные колебания групп С-О, С-С, кольцевых структур, деформационные колебания СОН-
групп. В ИК-спектрах окисленных образцов по сравнению со спектром регенерированной целлюлозы 
наблюдается увеличение интенсивностей полос поглощения в области 1200–1350 см-1, появление новых по-
лос поглощения при 851.6 и 1056 см-1, а также существенное уменьшение интенсивности полосы при 
893.1 см-1. Причем с увеличением степени окисления целлюлозы указанные спектральные изменения уси-
ливаются. Не исключено, что полосы в этой области обусловлены также колебаниями вторичных и первич-
ных гидроксильных групп, однако их детальная интерпретация в настоящее время проблематична. Можно 
предположить, что данные спектральные изменения могут быть вызваны тем, что наряду с основным про-
цессом окисления первичных гидроксильных групп у С6 до карбоксильных, протекает также незначитель-
ное постепенное накопление карбонильных групп в положении С2 и С3 α-D-ангидроглюкопиранозного 
звена целлюлозы, что подтверждается данными химического анализа (табл. 1). 

  

Рис. 1. Кинетические зависимости накопления 
COOH-групп (а, в) и азота (б) в ОРЦ при 
окислении в системе HNO3 (7.8 мл) – H3PO4 
(10.3 мл) – NaNO2 при различной концентрации 
катализатора в смеси, %: 1 – 0.0, 2 – 0.06, 3 – 
0.12, 4 – 0.36, 5 – 0.72 (T = 20 °C, гидромодуль 
1 : 18 г/мл) (а); 1 – 0.06, 2 – 0.12, 3 – 0.36, 4 – 
0.72 (T=20 °C, гидромодуль 1 : 18 г/мл) (б); 
HNO3 (Y) – H3PO4 (10.3 мл) – NaNO2 (0.12%) 
при различном содержании азотной кислоты в 
смеси (Y), мл:  
1 – 7.8; 2 – 10.0; 3 – 13.0; 4 – 16.0 (T = 20 °C, 1 г 
РЦ (в)  
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Таблица 1. Физико-химические свойства синтезированных ОРЦ [HNO3 (7.8 мл) – H3PO4 (10.3 мл) – NaNO2 
(0.12%), T=20 °C, гидромодуль 1 : 18 г/мл] 

Образец Зольность (X), % N, % ССО, % Влажность, % СКотн., % Выход, % 
Исходная РЦ 0.29 0.0 0.0 8.5 41.1 – 
ОРЦ (СCOOH = 8.0%) 0.084 0.65 0.06 10.8 33.3 95.0 
ОРЦ (СCOOH = 16.9%) 0.049 0.23 0.10 11.4 23.3 98.6 
ОРЦ (СCOOH = 22.3%) 0.041 0.03 0.11 13.0 7.8 82.6 

На рисунке 2 приведены дифрактограммы исходной и окисленных регенерированных целлюлоз с 
разным содержанием карбоксильных групп, полученных при различном соотношении азотной и фосфорной 
кислот в смеси. Дифракционные кривые окисленных образцов не аналогичны дифракционной картине ис-
ходной регенерированной целлюлозы. Дифрактограмма исходной регенерированной целлюлозы имеет ха-
рактерные для целлюлозы II рефлексы (2θ = 12.0, 20.1 и 21.7°). На всех дифрактограммах окисленных цел-
люлоз появляется рефлекс при 2θ = 15.3° (характерный для полиморфной модификации целлюлозы I), при 
этом интенсивность рефлекса при 2θ = 12.0° уменьшается с увеличением степени окисления, а в высоко-
окисленных образцах (кривые 5 и 6) он отсутствует. Как видно из рисунка 2, в окисленных регенерирован-
ных целлюлозах отсутствует и рефлекс при 2θ = 20.1°, при этом с увеличением содержания COOH-групп 
уменьшается общая интенсивность основного рефлекса плоскости 020 при 2θ = 21.7° и происходит незна-
чительное смещение его максимума в область больших углов 2θ = 22.3° у окисленных целлюлоз с содержа-
нием COOH-групп более 16% и ширина рефлексов изменяется в сторону увеличения. Все указанные изме-
нения говорят о значительном снижении доли кристаллических областей в ОРЦ при изменении параметров 
самой кристаллической ячейки и уменьшении эффективных размеров кристаллитов, однако без полной 
аморфизации даже при очень высоких степенях окисления регенерированной целлюлозы. Данные по изу-
чению физико-химических свойств некоторых из полученных окисленных регенерированных целлюлоз, в 
том числе и степени кристалличности, представлены в таблице 1. 

Неизотермические термогравиметрические и дифференциальные термогравиметрические кривые ис-
ходной РЦ и трех образцов ОРЦ приведены на рисунке 3. Как видно, введение в макромолекулу целлюлозы 
карбоксильных групп оказывает существенное влияние на термические характеристики модифицированной 
целлюлозы, главным образом, на начальную температуру и механизм деградации. Все исследованные об-
разцы теряют массу в три этапа: первый (Т = 70–170 °С) связан с удалением адсорбированной влаги, второй 
(Т = 170–400 °С) и третий (Т = 400–600 °С) обусловлены непосредственно глубокой деградацией и распадом 
полисахарида (карбонизация). На втором этапе идет наибольшая потеря массы образцов (больше 50%). Как 
видно из кривых ДТГ, на втором этапе разложения всех окисленных регенерированных целлюлоз можно 
наблюдать два участка (первый с максимумом в интервале Т = 190–220 °С, а второй – в интервале Т = 229–
254 °С), где разложение протекает с различной скоростью, в отличие от аналогичного этапа разложения для 
исходной целлюлозы (максимум при Т = 302.5 °С). При этом карбонизация всех образцов ОРЦ начинается 
при более низких температурах (табл. 2), чем для исходной целлюлозы. Как видно из таблицы 2, для всех 
образцов целлюлоз масса образовавшегося при 600 °С карбонизованного остатка практически одинакова, 
при этом с увеличением содержания COOH-групп начальная температура карбонизации значительно умень-
шается, и температура, при которой образцы теряют 50% массы, тоже зависит от степени замещения по 
карбоксильным группам, но в меньшей степени. Таким образом, термическая стабильность образцов ОРЦ 
уменьшалась с увеличением степени окисления. 

Как видно из представленных в таблице 1 данных, при окислении РЦ в системе HNO3 – H3PO4 – 
NaNO2 происходит также незначительное накопление карбонильных групп, которое несколько увеличива-
ется с возрастанием содержания карбоксильных групп. Однако данный показатель не регламентируется тре-
бованиями USP, при этом зольность (не более 0.15%), содержание азота (не более 0.5%) и влажность (не 
более 15%) во всех образцах ОРЦ с требуемым для изделий медицинского назначения содержанием кар-
боксильных групп (18–24%) соответствуют норме. Полученные изделия медицинского назначения на ос-
нове окисленной вискозы могут быть использованы в качестве биодеградируемого кровоостанавливающего 
средства. 
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Рис. 2. Дифрактограммы исходной РЦ (1) и 
синтезированных ОРЦ (2–6) с различным 
содержанием карбоксильных групп, %: 8.0 (2), 
10.6 (3), 16.9 (4), 21.7 (5), 22.3 (6). Условия 
получения образцов 2–6 в системе HNO3/H3PO4 
(мл): 2 – 544/0, 3 – 467/77, 4 – 389/155, 5 – 
117/427, 6 – 58/486, T = 20 °C, 30.0 г 
регенерированной целлюлозы, 1 г NaNO2 (0.12%)  

 

 

Рис. 3. ТГ (1–4) и ДТГ кривые исходной (1') и окисленных (2'–4') регенерированных целлюлоз с 
различным содержанием карбоксильных групп, %: 8.0 (2), 16.9 (3'), 22.3 (4'); условия получения 
образцов ОРЦ указаны в подписи к рисунку 2 

Таблица 2. Количественные характеристики температурной деградации в токе азота исследованных 
образцов исходной и окисленной РЦ с разной степенью окисления∗  

Полисахарид СCOOH, % Тнач., °С Т50%, °С Остаток при 600 °С, % 
Исходная РЦ 0.0 276.2 334 28.4 

ОРЦ 
8.0 204.7 320 24.1 
16.9 177.0 321 31.7 
22.3 171.6 270  28.1 

∗Тнач, Т50% – температуры начала деградации (карбонизации) и потери 50% массы модифицированного полисахарида, 
соответственно. 

Заключение 

В настоящее время актуальными научно-практическими проблемами является поиск новых безопас-
ных и эффективных способов получения материалов медицинского назначения, в особенности на основе 
возобновляемого растительного сырья, к которым относится окисленная хлопковая и регенерированная цел-
люлозы, широко используемые в медицинской практике вот уже более 60 лет в качестве биодеградируемого 
кровоостанавливающего средства, а в последние десятилетия – и в качестве носителя и пролонгатора низ-
комолекулярных лекарственных веществ широкого спектра действия. 
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Нами разработан эффективный и безопасный способ окисления регенерированной целлюлозы (вис-
козы) в системе HNO3 – H3PO4 – NaNO2, который позволяет получать окисленную регенерированную цел-
люлозу с содержанием COOH-групп 18–24% в порошковой форме, соответствующую по показателям каче-
ства требованиям USP, что позволяет использовать ее в медицинской практике в качестве биодеградируе-
мого гемостатического материала.  

Строение окисленных регенерированных целлюлоз с различным содержанием COOH-групп подтвер-
ждено методами ИК-спектроскопии и элементного анализа, структура образцов и их термическая стабиль-
ность изучены методами рентгеноструктурного и термогравиметрического (ТГ) анализов, соответственно.  

Показано, что дифрактограммы окисленных регенерированных целлюлоз имеют рефлексы, характер-
ные для двух полиморфных модификаций: целлюлозы II (характерная для исходной регенерированной цел-
люлозы) и целлюлозы I. 
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Butrim S.M.1, Bil′dyukevich T.D.1, Butrim N.S.1, Litvyak V.V.2* OXIDATION OF VISCOSE IN THE HNO3–H3PO4–

NaNO2 SYSTEM: FUNCTIONAL AND STRUCTURAL ANALYSIS, PROPERTIES AND POTENTIAL APPLICATION 
1 Belarusian State University, Research Institute for Physical Chemical Problems, Leningradskaya st., 14, Minsk, 
220006, Belarus  
2 All-Russian Research Institute of Starch and Starch-containing Raw Materials Processing – Branch of Russian 
Potato Research Centre, Nekrasova st., 11, Kraskovo, Moscow Region, 140051, Russia, besserk1974@mail.ru 
A method has been developed for the oxidation of regenerated cellulose (viscose) in the HNO3–H3PO4–NaNO2 system, 

which makes it possible to obtain oxidized regenerated cellulose with a COOH group content of 18–24% in powder form, which 
meets USP quality requirements, which allows its use as a biodegradable hemostatic material. The structure of oxidized regen-
erated celluloses with different contents of COOH groups was confirmed by IR spectroscopy and elemental analysis; the structure 
of the samples and their thermal stability were studied by X-ray diffraction and thermogravimetric (TG) analyses, respectively. 
It has been shown that the diffraction patterns of oxidized regenerated celluloses have reflections characteristic of two poly-
morphs: cellulose II (characteristic of the original regenerated cellulose) and cellulose I. It has been established in the IR spectrum 
of oxidized regenerated cellulose a band of C=O stretching vibrations of the carboxyl group appears at 1731 cm-1, the intensity 
of which increases with increasing content of carboxyl groups in oxidized viscose. It has been shown that the degree of crystal-
linity of oxidized regenerated celluloses obtained in this system decreases proportionally with an increase in the content of car-
boxyl groups in oxidized viscose, while complete amorphization of viscose is not observed even at the maximum degree of 
oxidation (24.09% COOH groups). It was founded that at a low catalyst concentration (0.06–0.12%) the viscose oxidation reac-
tion has a pronounced autocatalytic character, and the kinetic curve has a characteristic S-shaped form, while the accumulation 
of bound nitrogen passed through a maximum and decreases significantly with the reaction time.  

Keywords: oxidized regenerated cellulose, catalyst, amorphization, oxidation state, carboxyl groups, nitroether nitrogen. 
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