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Предварительная обработка лигноцеллюлозного растительного сырья является важным этапом для получения 

глюкозы ферментативными методами. В результате кислотной обработки растительного сырья и растворения его геми-
целлюлозной части происходит образование ксилозного раствора и разрыхление структуры нерастворимого остатка. 
В статье рассмотрена реакционная способность целлолигнина после ксилитной варки березовой древесины при различ-
ном расходе кислоты на процесс гидролиза. Выход продуктов при завершении процесса ферментативного гидролиза в 
образце, обработанном с повышенным расходом кислоты (6.25 г/кг асд), составил 33.3 г/л, что на 55.6% выше, чем в 
случае образца, обработанного меньшим количеством кислоты (расход 3.75 г/кг асд). Выход продуктов при фермента-
тивном гидролизе исходной древесины березы составил 8 г/л, таким образом, реакционная способность образцов лиг-
ноцеллюлозного остатка при ферментативном гидролизе увеличивается с увеличением расхода кислоты при ксилитной 
варке соответственно с 2.2 и 4 раза. На практике целесообразно комбинировать процессы ксилитной варки и фермента-
тивного гидролиза для более эффективного использования ксилансодержащего сырья, получения ксилозы и глюкозы 
для последующего получения продуктов с добавленной стоимостью.  
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Введение 

Наблюдающаяся в мире тенденция перехода на здоровое питание и, как следствие этого, повышение 
качества жизни людей предполагает отказ от большого количества сахарозы и других быстрых углеводов в 
рационе питания людей. Поэтому в настоящее время большое внимание уделяется использованию подсла-
стителей – пищевых добавок, имеющих различную химическую природу, придающих пище сладкий вкус, 
но обладающих при этом низкой калорийностью. Среди веществ-подсластителей большим спросом пользу-
ется ксилит (древесный сахар) [1–3].  

Ксилит может быть получен химическим гидрированием ксилозы, которую, в свою очередь, полу-
чают либо кислотным, либо ферментативным гидролизом древесины или другого растительного сырья [4–
6]. Ксилоза образуется при гидролизе гемицеллюлоз, которые в основном представлены ксиланом. Ксилит 
может быть также получен из ксилозы микробиологическим синтезом с использованием рекомбинантных 
штаммов некоторых дрожжей и грибов [7, 8]. Увеличение объемов производства ксилита приводит к необ-
ходимости разработки эффективных методов и технологий утилизации лигноцеллюлозных отходов, обра-
зующихся при его получении [9]. 

Растительная биомасса является альтернативным возобновляемым ресурсом для устойчивого произ-
водства глюкозы, жидкого топлива, химикатов и полимерных материалов. В природе древесина и другие 
природные лигноцеллюлозные субстраты обладают высокой устойчивостью к биодеградации благодаря 
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тому, что в растениях фибриллы целлюлозы покрыты и сшиты гемицеллюлозами и дополнительно защи-
щены лигнином. Особое строение лигноцеллюлозного комплекса растений препятствует проникновению в 
субстрат гидролитических ферментов – целлюлаз, продуцируемых микроорганизмами-деструкторами дре-
весины. В то же время именно эти особенности не позволяют эффективно осуществлять ферментативный 
гидролиз лигноцеллюлозных материалов в биотехнологии без предварительной обработки [10–12].  

При проведении ксилитной варки в разбавленных растворах минеральных кислот происходит гидро-
лиз гемицеллюлоз до ксилозы с образованием значительного количества целлолигнина (до 70–80% от ис-
ходного сырья). В результате кислотной обработки и растворения гемицеллюлозы структура сложного лиг-
ноуглеводного комплекса разрыхляется и тем самым повышается доступность целлюлозных волокон для 
последующего ферментативного гидролиза целлюлазами [13–16].  

Таким образом, кислотную обработку растительного сырья при ксилитной варке можно рассматри-
вать как один из способов предварительной обработки растительного сырья перед ферментативным гидро-
лизом. Можно полагать, что при комбинировании процессов ксилитной варки и ферментативного гидролиза 
остающегося после варки лигноцеллюлозного остатка можно достичь существенной валоризации отходов 
за счет получения ассортимента продуктов с добавленной стоимостью (рис. 1).  

Цель настоящей работы заключалась в изучении влияния расхода серной кислоты на эффективность 
ферментативного гидролиза лигноцеллюлозного остатка после ксилитной варки. 

Объекты и методы исследования 

В работе использовали измельченную окоренную древесину березы (Betula pendula), заготовленную 
в Ленинградской области, с содержанием легкогидролизуемых полисахаридов – 25.2%. Для проведения 
ферментативного гидролиза были использованы ферментные препараты Penicillium verruculosum: В151 и 
F10. Характеристики ферментных препаратов приведены в таблице 1.  

 

Рис. 1. Принципиальная схема получения ксилозы и глюкозы последовательным кислотным 
и ферментативным гидролизом 

Таблица 1. Характеристики ферментных препаратов 
Ферментный препарат Содержание 

белка, мг/г 
Активность по отношению к субстратам, ед./г 

МКЦ КМЦ β-Глюкан Ксилан пНФГ 
В1-151, #3.377.2Н 970 620 16540 15100 17500 1070 
F10, №3,341Н 655 220 7000 6800 3800 39800 
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Условия кислотного гидролиза древесины. Процесс кислотного гидролиза древесины проводили в 
стальном автоклаве. Внутрь автоклава помещали стеклянную пробирку, в которую загружали сырье, пропи-
танное раствором разбавленной серной кислоты в концентрации 0.25% (образец №1) и 0.15% (образец №2), 
при соотношении жидкость/твердое L/S = 2.5. Температура процесса составляла 180 °С, продолжительность – 
50 мин. Полость между стенками автоклава и пробиркой для улучшения теплопередачи заполняли водой.  

После завершения кислотного гидролиза образцы гидролизат-массы отмывали горячей водой до 
нейтральной реакции, образовавшийся целлолигнин использовали для ферментативного гидролиза.  

Углеводы в полученном гидролизате анализировали на газожидкостном хроматографе фирмы SHI-
MADZU модели GC-2014 с использованием ПИД-детектора и капилярной колонки Rx-5 SilMScolumn с раз-
мерами 30000 × 0.18 мм со слоем носителя 0.10 мкм (фаза силарилена низкой полярности с поперечными 
связями; аналогично 5% фенила/95% диметилполисилоксана) [17] по методике, приведенной ниже.  

Для анализа брали нейтрализованный известковым молоком гидролизат 10 мл с рН 5.0–6.0. Далее 
раствор выпаривали на ротационном испарителе при 55 °С и сушили до постоянного веса. Около 5–10 мг 
остатка от высушивания переносили в емкость на 10 мл. Затем сухой остаток в этой же колбе растворяли в 
0.2 мл свежеперегнанного сухого пиридина, добавляли 0.9 мл гексаметилдисилазана и 0.2 мл триметилхлор-
силана. Колбу нагревали и выдерживали реакционную смесь в течение 10 мин. Остаток растворяли в этой 
же колбе в 2 см3 гексана [18]. 

Полученный раствор помещали в пробозадатчик хроматографа. Условия анализа: газ-носитель N2, 
30.0 см/с; программа температур – 1 мин при 70 °С, подъем 4 °С/мин до 320 °С, 5 мин при 320 °С; темпера-
тура ввода пробы – 280 °С, делитель потока – 1 : 20, объем пробы – 4 мкл; детектор пламенно-ионизацион-
ный, температура – 325 °С [19]. 

Определение активностей ферментных препаратов. За 1 ед. активности принимали такое количе-
ство фермента, которое катализирует образование 1 мкмоль продукта за 1 мин.  

Активности по отношению к полисахаридным субстратам – Na-соли карбоксиметилцеллюлозы 
(КМЦ), β-глюкану ячменя, микрокристаллической целлюлозе (МКЦ), ксилану бука (концентрация 5 г/л в 
реакционной смеси) определяли по начальным скоростям образования восстанавливающих сахаров (ВС) 
при рН 5.0 и 50 °С методом Шомоди-Нельсона [20]. 

Активности по отношению к п-нитрофенил-β-D-глюкозиду (пНФГ, 0.9 мМ в реакционной смеси) 
определяли по скорости образования п-нитрофенола при рН 5.0 и 50 °С [20]. 

Содержание белка в ферментных препаратах определяли методом Лоури, используя бычий сыворо-
точный альбумин в качестве стандарта.  

Ферментативный гидролиз целлолигнина проводили в термостатируемых при 50 °С ячейках объемом 
50 мл, помещенных на качалку (250 колебаний/мин). В ячейку вносили навеску целлолигнина, рассчитанное 
количество 0.1 М Na-ацетатного буфера (рН 5.0) и 1 мл раствора, содержащего необходимое количество 
ферментного препарата. Общий объем реакционной смеси составлял 20 мл. Концентрация целлолигнина в 
реакционной смеси составляла 100 г/л (в пересчете на сухое вещество). Дозировка ферментного препарата 
P. verruculosum B151 составляла 10 мг белка на 1 г сухого вещества (а.с.в.) субстрата. Совместно с препара-
том P. verruculosum B151 в реакционную среду добавляли содержащий β-глюкозидазу препарат P. verrucu-
losum F10 так, чтобы концентрация белка F10 в реакционной среде составляла 3 мг на 1 г сухого вещества 
субстрата. Через определенные промежутки времени из реакционной смеси отбирали пробы (по 0.5 мл), 
центрифугировали (10 тыс. об./мин, 3 мин) и измеряли в них концентрацию ВС методом Шомоди-Нельсона, 
а также концентрацию глюкозы глюкозооксидазно-пероксидазным методом [20].  

Результаты исследования и их обсуждение 

Гидролиз образцов древесины березы был проведен в двух режимах, отличающихся концентрацией 
серной кислоты – образец №1 получали с использованием серной кислоты в концентрации 0.25% (расход 
6.25 г/кг абсолютно сухой древесины (а.с.д.), а образец №2 – в концентрации 0.15% (расход 3.75 г/кг а.с.д.) 
Другие параметры процесса в обоих случаях оставались неизменными: гидромодуль (L/S) – 2.5, температура 
180 °С, время процесса – 50 мин.  

По данным газовой хроматографии (табл. 2), время удерживания продуктов силилирования ксилозы 
составили 17.7 и 18.9 мин с расчетным выходом ксилозы в гидролизатах 73.8 и 75.6% соответственно от 
суммы углеводов. Эти показатели свидетельствуют об эффективности применения низких концентраций 
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серной кислоты для гидролиза гемицеллюз древесины березы, причем наибольший выход ксилозы наблю-
дается при использовании серной кислоты в концентрации 0.25%. 

Непрореагировавшие остатки древесины (гидролизат-масса) в обоих опытах имели влажность 71%. 
Гидролизат-массу промывали водой для удаления серной кислоты и для извлечения образовавшихся моно- 
и олигосахаридов. В образце №1 содержание водорастворимых веществ оказалось 37%, а выход инвертиро-
ванных редуцирующих веществ – 20.9%. В образце №2 – соответственно 33.2 и 15.7%.  

После промывки оба образца гидролизат-массы подвергли ферментативному гидролизу. За критерий 
реакционной способности целлолигнина при ферментативном гидролизе принимали выход продуктов (ВС) 
при предельной степени его ферментативной конверсии по отношению к а.с.в., т.е. выход продуктов (ВС) 
при исчерпывающем гидролизе субстрата [17]. Выход ВС при ферментативном гидролизе образца №1 через 
24 ч составил 25.8 г/л (рис. 2), что на 42% выше по сравнению с образцом №2 (10.9 г/л); выход ВС через 
48 ч (при завершении процесса ферментативного гидролиза) в случае образца №1 составил 33.3 г/л – это на 
55.6% выше, чем в случае образца №2 (18.5 г/л). Очевидно, что образец №1, обработанный серной кислотой 
с более высокой концентрацией, проявил высокую реакционную способность при ферментативном гидро-
лизе, что обусловлено более глубоким кислотным гидролизом гемицеллюлозной части древесины и, веро-
ятно, частичным разрушением кристаллической решетки целлюлозы. Важно подчеркнуть, что в составе 
продуктов ферментативного гидролиза преобладала глюкоза – ее концентрация в реакционной смеси была 
сопоставима с концентрацией ВС (рис. 2). 

Выход ВС при ферментативном гидролизе исходной древесины березы составил 8 г/л, таким образом, 
реакционная способность образца №1 при ферментативном гидролизе увеличилась примерно в 4 раза, об-
разца №2 – в 2.2 раза. 

Таблица 2. Выход моносахаридов по данным газовой хроматографии  

Углеводы 
Выход моносахаридов, %  Выход моносахаридов, мг/г а.с.д. 

Образец №1 Образец №2 Образец №1 Образец №2 
арабиноза 3.6 3.6 7.52 5.63 
рамноза 1.5 3.5 3.07 5.45 
фукоза 3.8 3.8 8.01 5.96 
ксилоза 73.8 75.6 154.18 118.65 
фруктоза 0.2 0.7 0.37 1.10 
манноза 8.5 7.1 17.71 11.22 
галактоза 1.3 1.9 2.69 2.91 
глюкоза 7.4 3.9 15.46 6.09 
ВСЕГО 100.00 100.00 209 157 

 

 

Рис. 2. Выход восстанавливающих сахаров и глюкозы при ферментативном гидролизе целлолигнина  

Отметим, что реакционная способность при ферментативном гидролизе образца №1 сопоставима с 
таковой осиновых опилок гидролизованных 1% серной кислотой при 140 °С в течение 1 ч (36 г/д ВС) или 
багассы после парового взрыва (34 г/л ВС) [21].  
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Таким образом, целлолигнин, полученный после гемицеллюлозного гидролиза древесины березы с 
расходом кислоты 6.25 г/кг абсолютно сухой древесины, пригоден для получения глюкозы методом фер-
ментативного гидролиза и может быть рекомендован для использования в производстве глюкозы для их 
последующей переработки в спирты, аминокислоты и другие продукты микробного синтеза.  
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Bakhtiyarova A.V.1*, Mambetova S.R.1, Pimenov S.D.1, Volodin V.V.1, Sinitsyn A.P.2 ENZYMATIC HYDROLYSIS OF 
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Pretreatment of lignocellulosic plant feedstock is an important step for glucose production by enzymatic methods. Acid 

treatment of birch sawdusts results in dissolution of hemicelluloses with xylose formation. The article considers the reactivity of 
cellolignin after xylitol production of birch wood at different acid consumption for the hydrolysis process. The yield of products 
after the enzymatic hydrolysis in the sample treated with increased acid consumption (6.25 g/kg dry wood) was 33.3 g/L, which 
is 55.6% higher than in the case of the sample treated with less amount of acid (consumption of 3.75 g/kg dry wood). The yield 
of products of enzymatic hydrolysis of untreated birch was 8 g/l. Thus the reactivity of lignocellulosic wastes for enzymatic 
hydrolysis increases with the increase of acid consumption at xylitol production from 2.2 to 4 times, respectively. In practice, it 
is advisable to combine the processes of xylitol production with enzymatic hydrolysis for more efficient utilization of xylan-
containing feedstock, the obtaining both xylose and glucose for subsequent production of value-added products. 

Keywords: xylitol production, enzymatic hydrolysis, reactivity, cellolignin, xylose, glucose. 
For citing: Bakhtiyarova A.V., Mambetova S.R., Pimenov S.D., Volodin V.V., Sinitsyn A.P. Khimiya Rastitel'nogo 
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