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В настоящем обзоре обобщены и проанализированы способы выделения растительных пигментов (антоцианов, 

беталаинов, каротиноидов) методом ультразвуковой экстракции из вторичных растительных ресурсов пищевой про-
мышленности. Извлечение красящих веществ из растительных отходов позволяет одновременно улучшить глубину пе-
реработки исходного сырья, снизить нагрузку на окружающую среду и увеличить объемы производства натуральных 
красителей. К тому же растительные пигменты представляют собой низкомолекулярные вещества, обладающие функ-
циями физиологически активных соединений. В обзоре представлены материалы из баз данных Scopus (scopus.com), 
Google Sсholar (scholar.google.ru) и РИНЦ (elibrary.ru), опубликованные, главным образом, за период 2019–2023 гг. Ана-
лизировали статьи, посвященные экстрагированию красящих веществ из отходов переработки пищевого растительного 
сырья и преимуществам ультразвуковой экстракции. Анализу подвергли 134 статьи, из них 41% публикаций вышли в 
последние два года. Показаны преимущества ультразвуковой экстракции, включая возможность отказаться от исполь-
зования или существенно уменьшить объем органических растворителей, позволяющие определить данный метод в ка-
честве «зеленой» технологии. Акцент сделан на распространенном в нашей стране вторичном сырье, которое накапли-
вается после переработки клюквы и других ягод, лука, моркови, свеклы. Работы, посвященные изучению влияния уль-
тразвука на экстракцию растительных пигментов, подтверждают актуальность темы исследований. В ряду перспектив-
ных направлений отмечают: совершенствование метода ультразвуковой экстракции, включая оптимизацию способов и 
режимов обработки, а также поиск эффективных комбинаций ультразвука с другими щадящими методами экстракции. 
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Введение  

Агропродовольственный сектор охватывает отрасли перерабатывающей промышленности, в которых 
ежегодно образуются огромные объемы отходов, которые, загрязняя окружающую среду, оказывают давление 
на экологию [1, 2]. При этом побочные продукты сельского хозяйства содержат биологически активные веще-
ства (БАВ) и технологически важные добавки, что позволяет рассматривать их как сырье для производства 
новых целевых продуктов с высокой добавленной стоимостью [1, 3–6]. Отходы пищевой промышленности 
представляют собой дополнительный источник питательных и фитохимических веществ, поэтому их вторич-
ная переработка актуальна в связи с растущим спросом на пищевые ингредиенты натурального происхожде-
ния [3, 7, 8]. Такой подход перспективен в части развития экономики замкнутого цикла [9–12]. 

Потери и отходы плодоовощной промышленности составляют почти 60% от общего объема исход-
ного сырья [13]. Эта отрасль, производя джемы, соки, закуски или салаты, одновременно накапливает зна-
чительное количество агропромышленных отходов, таких как семена, кожура, жмых, шелуха [2]. Одним из 
основных источников пищевых отходов являются фрукты и овощи, вклад которых составляет 0.5 млрд тонн 

 
* Автор, с которым следует вести переписку. 



А.Г. ПОГОРЕЛОВ, Л.Г. ИПАТОВА, В.Н. ПОГОРЕЛОВА И ДР. 32 

в год [14]. Из этого объема 92% приходится на кожуру [15]. Побочные продукты переработки фруктов и 
овощей содержат ценные биологически активные соединения, в целом положительно влияющие на здоровье 
человека [14]. Основная цель утилизации отходов состоит в экстракции этих веществ, которые к тому же 
становятся источником полезных добавок в пищевой и фармацевтической промышленности [15–17]. Из по-
бочных продуктов переработки фруктов и овощей могут быть извлечены различные категории соединений 
с высокой добавленной стоимостью, востребованные в пищевых производствах. Относительно низкая цена 
сырья и разнообразные функциональные характеристики целевого продукта обусловливают актуальность 
исследований с тем, чтобы оптимизировать технологию, повысить производительность, улучшить качество, 
внешний вид, вкусовые характеристики пищевых продуктов [2, 9, 18]. Ряд работ посвящен экстрагированию 
натуральных ингредиентов (витаминов, антиоксидантов, пигментов) из побочных продуктов переработки 
фруктов и овощей [1, 19–27]. 

Забота о здоровье привела к росту спроса на функциональные продукты питания, натуральные пище-
вые добавки и, в целом, на развитие экологически чистых пищевых технологий [11, 23]. Многие раститель-
ные пигменты представляют собой фитохимические вещества с полезными физиологическими функциями 
и фармакологическими свойствами [8, 9, 25, 28–30]. Пищевые ингредиенты из растительного сырья находят 
применение при разработке функциональных продуктов питания, обладающих повышенной пищевой цен-
ностью [24, 30]. Потребитель отдает предпочтение пищевым продуктам, отвечающим концепции «чистой 
этикетки», т.е. свободным от искусственных красителей, антиоксидантов, консервантов или других добавок 
[23, 31, 32]. 

Экстракция веществ из растительного сырья, помимо выделения натуральных ингредиентов, решает 
задачу рационального использования вторичных растительных ресурсов [33]. Разработка новых стратегий 
более полного извлечения целевых соединений является важным фактором с точки зрения экономической 
эффективности. При этом учитывают характеристики растительной матрицы, выбор растворителя, соотно-
шение жидкости и твердого вещества, температуру, давление и время экстракции [2]. Каждый метод экс-
тракции имеет свои особенности и обеспечивает различную эффективность и качество экстракта [33, 34]. 
Традиционные методы экстракции просты в исполнении и основаны на использовании разнообразных по-
лярных и неполярных органических растворителей. Их недостатки, прежде всего, обусловлены длительно-
стью и трудоемкостью процесса, использованием значительного количества растворителей и применением 
высоких температур. Притом что проведение экстракции под нагреванием приводит к снижению выхода 
продукта вследствие разложения или деградации значительных количеств термолабильных фитохимиче-
ских веществ. Использование органических растворителей оказывает негативное воздействие, так как боль-
шинство из них являются летучими, легковоспламеняющимися и токсичными [26]. Поэтому экстракцию с 
применением таких растворителей рассматривают как экологически вредную технологию [21, 35]. 

Чтобы снизить токсический эффект, уменьшая расход растворителей, и повысить эффективность экс-
тракции, внедряют экологически чистые «зеленые» технологии, которые дополняют или заменяют тради-
ционные способы [11, 21, 36]. «Зеленые» технологии должны свести к минимуму производство отходов и 
использование опасных веществ [14, 26], а также снизить эксплуатационные расходы и потребление энергии 
[1]. К таким подходам относят микроволновую и ультразвуковую экстракцию, обработку импульсным элек-
трическим полем или с помощью ферментов, экстракцию при температуре и давлении в критической точке 
или под гидростатическим давлением [21, 37, 38]. Применяют также экстракцию горячей водой под давле-
нием, после обработки разрядом плазмы или нагрева в результате пропускания импульсов электрического 
тока [15]. Вследствие структурного разнообразия извлекаемых веществ, а также наличия у растительной 
клетки относительно толстой и механически прочной целлюлозной оболочки, условия экстракции варьи-
руют в зависимости от вида сырья [15, 29, 39–43]. 

Извлечение красящих веществ из вторичных растительных ресурсов пищевой промышленности и 
сельского хозяйства позволяет одновременно улучшить глубину переработки исходного сырья, что снижает 
нагрузку на окружающую среду, и увеличить объемы производства натуральных красителей. К тому же 
растительные пигменты представляют собой низкомолекулярные вещества, обладающие функциями физио-
логически активных соединений. 

Анализ научной литературы показал, что в существующей картине знания важным является обзор 
предметного поля по следующим наиболее популярным, но недостаточно изученным направлениям в обла-
сти исследуемой проблематики:  
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– преимущества ультразвуковой экстракции (УЗЭ); 
– способы экстракции антоцианов, фенолов и флавоноидов из фруктов и ягод, флавоноидов лука, 

каротиноидов и беталаинов свеклы. 
Обозначенные выше пробелы в знании позволили сформулировать следующее целеполагание иссле-

дования. Для систематизации способов экстракции красящих веществ из отходов переработки пищевого 
растительного сырья и преимуществ ультразвуковой экстракции по сравнению с другими способами извле-
чения пигментов необходимо получить ответы на актуальные вопросы. В их ряду: какие проводятся иссле-
дования с целью разработки оптимальных методов извлечения целевых веществ из вторичного раститель-
ного сырья? Какие решения занимают устойчивую позицию среди наиболее перспективных методов экс-
тракции пигментов из растительного сырья, наряду с высоким выходом экстрагируемых веществ? 

Целью данного обзора является анализ и обобщение данных за последние 5 лет исследований отече-
ственных и зарубежных ученых о режимах проведения ультразвуковой экстракции пигментов из отходов 
переработки овощей, фруктов и ягод, в том числе в комбинации с различными растворителями или спосо-
бами предобработки сырья. 

Экспериментальная часть 

Базы данных и временные рамки. Акценты исследования были расставлены и реализованы на диапа-
зоне выявленных результатов в области обзора лучших практик ультразвуковой экстракции пигментов из 
растительного сырья. Создание настоящего обзора обосновано сложностью и многогранностью проблема-
тики, а также отсутствием ее всестороннего анализа на основе источников последних лет в области способов 
выделения растительных пигментов (антоцианов, беталаинов, каротиноидов) с применением ультразвуко-
вой экстракции. Возможность отказаться от использования или существенно уменьшить объем органиче-
ских растворителей позволяет определить ультразвуковую экстракцию в качестве «зеленой» технологии. 

Материалами для исследования послужили публикации из баз данных Scopus, Google Sсholar РИНЦ 
и других источников, опубликованных, главным образом, за период 2019–2023 годы в количестве 200 ис-
точников, из которых в обзор было включено 134 статьи, из них 41% публикаций вышли в последние два 
года. Анализировали статьи, посвященные экстрагированию красящих веществ из отходов переработки пи-
щевого растительного сырья и преимуществу ультразвуковой экстракции по сравнению с другими спосо-
бами извлечения пигментов. Акцент сделан на распространенном в нашей стране вторичном сырье, которое 
накапливается после переработки клюквы и других ягод, лука, моркови, свеклы.  

Критерии включения и исключения источников. Ключевыми словами для осуществления поиска в 
российских электронных библиотеках являлись следующие слова и словосочетания: «ультразвуковая экс-
тракция», «антоцианы», «каротиноиды», «беталаины», «клюква», «шелуха лука», «морковь», «красная 
свекла». Ключевыми словами для осуществления поиска в базах данных Scopus выступили: "ultrasonic 
extraction", "anthocyanins", "carotenoids", "betalains", "cranberries", "onion husks", "carrots", "red beetroot". 

Критерии включения и исключения для статей, подлежащих анализу, были следующими: 
Критерии включения: 
1. Анализируемые источники написаны в период 2019–2023 годы. 
2. Статья соответствует теме исследования. 
3. Типами анализируемых статей являются оригинальные исследовательские и обзорные статьи, мо-

нографии. 
Критерии исключения: 
1. Анализируемые источники не соответствует теме данного обзора: не касаются области экстракции 

пигментов из растительного сырья. 
2. Статьи, написанные не на русском или английском языках. 
3. Содержание статьи дублируется. Если из разных баз данных или разных электронных библиотеч-

ных систем были извлечены повторяющиеся источники и их классифицировали только один раз. 

Обсуждение результатов 

Для реализации поставленной цели были систематизированы способы экстракции красящих веществ из 
отходов переработки пищевого растительного сырья, показаны преимущества ультразвуковой экстракции по 
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сравнению с другими способами извлечения пигментов. Обсуждение литературных данных разбито на тема-
тические блоки: «Ультразвуковая экстракция», «Растительные пигменты группы антоцианов», «Антоцианы 
из ягод и фруктов», «Флавоноиды и антоцианы из луковой шелухи», «Каротиноиды», «Беталаины». 

Ультразвуковая экстракция. Обеспечивая эффективное извлечение веществ из растительного сырья, 
УЗЭ отличается простотой, низкой стоимостью и экологичностью [9, 13, 29, 44, 45]. В ряду преимуществ 
отмечают высокую производительность, сокращение времени обработки, снижение затрат на энергию и 
растворители, уменьшение выбросов углекислого газа в атмосферу, возможность извлечения термочувстви-
тельных соединений [13, 45]. УЗЭ сочетают с другими способами обработки [13, 44]. Стимулирующий ха-
рактер воздействия ультразвука на процесс экстракции обусловлен активизацией турбулентного потока рас-
творителя [46, 47], а также локальным повышением температуры с одновременным уменьшением вязкости 
экстрагента и возникновением кавитационных зон [45]. В результате разрушается стенка растительной 
клетки и уменьшается пограничный диффузионный слой и, как следствие, облегчается выход веществ из 
цитоплазмы [36]. 

Ультразвук − способ передачи энергии, генерируемой акустическими волнами частотой выше 18 кГц 
[33, 34]. Ультразвуковые волны приводят к кавитации и возникновению переменного давления в среде, что 
ускоряет экстракцию содержимого клетки [45]. Механическое воздействие ультразвука усиливает поверх-
ностный контакт между молекулами растворителя и растительным образцом, повышает проницаемость кле-
точных стенок. Для разрушения клеточных структур используют ультразвук низкой частоты от 20 до 
100 кГц, что способствует перемешиванию содержимого цитоплазмы и растворителя и ускоряет экстрак-
цию из растительного образца [13, 29, 35]. Основные принципы действия ультразвуковой кавитации отоб-
ражены на рисунке 1 [32]. 

Кавитация, нагревание, механическое воздействие и время являются основными факторами УЗЭ [29, 
48–50]. Данный метод применим для выделения как полярных, так и неполярных соединений, в том числе 
для экстракции веществ, чувствительных к нагреванию [9, 35]. По сравнению с традиционными методами, 
технология обработки на основе кавитации привлекает к себе внимание благодаря низкому потреблению 
энергии и высокой эффективности воздействия. При кавитации высвобождается большое количество энер-
гии за счет образования и схлопывания пузырьков, что повышает качество обработки различных раститель-
ных объектов [51]. Кавитация вызывает продольное смещение среды, инициируя чередующиеся сжатие и 
расширение образца, например, растительной клетки [51]. Пузырьки, образующиеся под действием ультра-
звука, лопаются с высвобождением энергии, порождая ударную волну и, в результате, перемешивание 
среды [13, 26]. Этот эффект вызывает быстрые локальные изменения давления и температуры, что приводит 
к разрушению клеточной стенки и, возможно, образованию свободных радикалов. Последнее обстоятель-
ство следует учитывать во избежание деградации целевого продукта [26, 52]. Таким образом, кавитация и 
обусловленное ультразвуком повышение температуры способствуют проникновению растворителя в расти-
тельную матрицу с последующим ее набуханием и высвобождение целевых метаболитов в растворитель 
[13, 33, 50, 53, 54]. Для УЗЭ используют небольшие объемы устойчивых растворителей, что позволяет счи-
тать этот метод безопасным для окружающей среды [13, 33, 34, 55]. При этом схему погруженного в раство-
ритель зонда считают предпочтительнее для извлечения биоактивных соединений [56]. 

Натуральные красители экстрагируют, как правило, из плодово-ягодного и овощного сырья или от-
ходов их переработки, используя органический растворитель. Процесс включает мацерацию [57] с последу-
ющим удалением растворителя [18], выбор которого зависит от его совместимости с пигментом, токсично-
сти, стоимости и степени извлечения целевого продукта [58]. Наиболее используемые растворители − это 
гексан, ацетон, метанол, трифторуксусная кислота [9]. Указанные жидкости представляют собой летучие 
взрывоопасные вещества, которые экологически небезопасны. В поиске альтернативных способов экстрак-
ции пигментов применяют комбинацию подходов [43, 59], включая УЗЭ [8]. Это эффективный метод, кото-
рый позволяет не только сократить время экстракции и потребление энергии, но также избежать воздей-
ствия высокой температуры [29]. 

В ряду природных пигментов, используемых в пищевой промышленности, значительная доля прихо-
дится на антоцианы, каротиноиды и беталаины [60]. Указанные соединения широко распространены в при-
роде и выполняют разные функции, участвуя в процессах фотосинтеза, привлекая опылителей, обеспечивая 
защиту от хищников и солнечной энергии. Антоцианы, каротиноиды, беталаины и порфирины относятся к 
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основным классам растительных пигментов, которые избирательно поглощают одни длины волн света и 
отражают другие [61]. В настоящем обзоре будут рассмотрены материалы, касающиеся методов выделения 
антоцианов из клюквы и других ягод, кверцитинов из шелухи лука, каротиноидов из моркови, беталаинов 
из корнеплодов красной свеклы с помощью УЗЭ.  

Растительные пигменты группы антоцианов. Наблюдается растущий интерес к природным антоциа-
нам [9, 50, 62–67], которые представляют собой большую группу растворимых в воде пигментов [9]. Перера-
ботка окрашенных ягод, фруктов, овощей в процессе производства соков, джемов, сиропов, безалкогольных 
напитков, вин, ликеров приводит к образованию большого количества побочных продуктов, которые можно 
использовать для извлечения антоцианов [9, 18, 68, 69]. Антоцианы в качестве пищевого красителя применя-
ются в напитках, йогуртах и сухих смесях [70]. В Российской Федерации в соответствии с СанПиНом 
2.3.2.1078-01 антоцианы разрешены к применению в пищевой промышленности в качестве натурального кра-
сителя для придания продуктам синего, фиолетового, красного и промежуточных цветов [31]. Помимо крася-
щей способности антоцианы обладают высокой питательной ценностью [23] и целебными свойствами [71]. 
Однако их ценность для здоровья человека зависит от степени их усвояемости. После потребления богатых 
антоцианами продуктов в плазме крови обнаруживают лишь следовые количества этих веществ и их произ-
водных, что свидетельствует о низкой усвояемости антоцианов. Отметим то, что конъюгат антоцианов и бел-
ков обладает более высокой биодоступностью по сравнению с пигментом без пептидного носителя [72]. 

Антоцианы относятся к флавоноидам семейства полифенолов, которые в изобилии содержатся в тка-
нях растений [23]. В их ряду наиболее распространены цианидин, пеонидин, пеларгонидин, мальвидин, 
дельфинидин и петунидин [50], химическая структура которых представляет собой полисахаридный конъ-
югат с положительным зарядом на атоме кислорода С-кольца, где в качестве сахара присутствует глюкоза, 
рутиноза, арабиноза или галактоза. Антоцианы также образуют соединения с органическими кислотами, 
например, яблочной или уксусной [26]. Эти пигменты устойчивы при кислых значениях рН, но разлагаются 
при нагревании и под действием ультрафиолета [66], что ограничивает их применение в качестве пищевых 
красителей. Низкомолекулярные антоцианы редко встречают в природе, так как их стабильность возрастает 
с увеличением степени гликозилирования и ацилированием. Ацилированные антоцианы чаще находят в 
растениях и цветках, а неацилированные − в плодах. В красном луке, например, обнаруживают агликоновые 
производные антоцианидинов (пираноантоцианы), которые стабильны при нейтральном значении рН и бо-
лее устойчивы к внешним воздействиям [23]. Нековалентное взаимодействие между белком/полисахаридом 
и антоцианами является ключевым фактором для стабилизации структуры антоцианов [73], обеспечивая со-
хранность комплекса при обработке или хранении пищевых продуктов [72, 74]. 

Рис. 1. Ультразвуковые эффекты, 
способствующие механизмам извлечения 
пигмента при обработке ультразвуком [32]  
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Антоцианы извлекают из растительного сырья с помощью как традиционных, так и инновационных 
методов экстракции [50, 66, 75–77]. Для каждого вида экстракции характерны свои параметры, которые 
влияют на объем и состав целевого продукта [59, 62]. Особенности химического строения пигментов накла-
дывают ограничения на условия экстракции, например, эти соединения разрушаются при нагревании [78]. 
УЗЭ рассматривают в качестве перспективного метода экстракции полифенолов и антоцианов из фруктов и 
ягод или отходов их переработки [36, 39, 53, 63, 79–84]. Относительно высокое содержание процианидина 
и антоцианов регистрировали в экстракте жмыха винограда после комбинированной обработки ультразву-
ком и водным раствором этанола [9, 69]. Показана возможность с помощью УЗЭ извлекать в воду антоцианы 
из замороженных ягод черной смородины, клюквы, брусники и китайского лимонника [85]. Известно, что 
этот метод экстракции обеспечивает наибольший объем извлечения антоцианов из плодов джамболана [50, 
62]. На примере черники подтверждена эффективность экстракции антоцианов посредством технологии 
FUTE, основанной на замораживании ягоды с последующим ее оттаиванием под действием ультразвука 
[59]. При этом предпочтительны низкие значения частоты, что способствует лучшему образованию кавита-
ционных пузырьков, сохраняя содержание радикалов в экстракте на низком уровне [26, 56]. Использование 
УЗЭ предполагает контакт ягод и экстрагента длительностью, как правило, не менее 12–30 мин [79, 85]. 

Антоцианы из клюквы. Клюква – одна из наиболее широко потребляемых ягод, которая содержит не 
только антоцианы, но и флаванолы, витамины, супероксиддисмутазу и фенольные кислоты [82, 86–89]. Ан-
тоцианы в естественном состоянии представлены в виде гликозилированного сахаром антоцианидина, при-
соединенного к агликону. В клюкве содержатся пеонидин-3-галактозид (48%), пеонидин-3-арабинозид 
(30%), цианидин-3-галактозид (11%) и цианидин-3-арабинозид (11%) [87]. Концентрация антоцианов варь-
ирует в зависимости от сорта и стадии созревания клюквы [90] притом, что концентрация пигмента в мякоти 
в 6–10 раз ниже, чем в кожуре [86, 90]. По этой причине клюквенный жмых, на долю которого приходится 
60% от объема перерабатываемого сырья [87], служит основным источником антоцианов. 

Пигмент извлекают из ягод обычно, используя органические растворители (метанол, ацетон, этила-
цетат и хлороформ), также применяют и другие подходы [16, 87]. Оптимальными растворителями для экс-
тракции неантоцианиновых полифенолов являются этанол и метанол с 1%-ной трифторуксусной кислотой 
или 1%-ная HCl. Технологию УЗЭ рассматривают в качестве перспективного метода выделения антоцианов 
из растительных источников [89]. Сравнивая различные методы экстракции, показали высокий потенциал 
УЗЭ для извлечения полифенолов из прессованных остатков американской клюквы [91]. В цитируемой ра-
боте подобраны оптимальные режимы экстракции: длительность УЗЭ – 15–25 мин, соотношение твердой и 
жидкой фаз – от 1 : 90 до 1 : 120, температура – 53 °С и концентрация этанола – 52%. Некоторые режимы 
экстракции антоцианов и других фенольных соединений плодов и ягод представлены в таблице 1. 

Таблица 1. Ультразвуковая экстракция антоцианов, фенолов и флавоноидов из фруктов и ягод 
Растительное 

сырье 
Экстрагируемые ве-

щества 
Условия экстракции Выход целевых веществ Источ-

ник 
1 2 3 4 5 

Цедра плодов 
сладкого апель-
сина  

фенолы, флавоноиды УЗЭ, частота 20 кГц, амплитуда 70.89%, 
время 35 мин, температура комнатная, 
растворитель 50% этанол, соотношение 

растворитель : образец 40 мл/г  

фенолы 590±0.92 мг GAE/100 г 
флавоноиды 

104.99±0.35 мг КС/100 г 

[39] 

Кожура плодов 
груши 

13 видов антоцианов, 
в основном, циани-
дин, дельфинидин, 

петунидин 

УЗЭ, мощность 162 Вт, время 11 мин, 
температура 71 °С, растворители: 3% 

трифторуксусная кислота, 57% этанол; 
соотношение образец : растворитель 

1 : 30 г/л  

антоцианы 0.34±0.05 мг/г в эк-
виваленте Cy3-gal 

[53] 

Ягоды черники антоцианы, циани-
дин-3-О-глюкозид 

Технология FUTE: замораживание об-
разцов в течение 5.43 мин в жидком 

азоте с последующим оттаиванием в УЗ 
ванне, мощность 600 Вт, частота 40 кГц, 

время УЗ 23.56 мин, температура 
41.64 °C, растворитель 60% этанол, соот-
ношение растворитель : образец 24.07 : 1 

мл/г 

антоцианы 2.53 мг/г [59] 
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Продолжение таблицы 1 
1 2 3 4 5 

Плоды джамбо-
лана 

антоцианы, в т.ч. 
дельфинидин-3,5-ди-

глюкозид, петуни-
дин-3,5-диглюкозид 
и мальвидин-3,5-ди-

глюкозид 

УЗ погружной зонд, плотность мощно-
сти УЗ 5000 Вт/л, время 7.5 мин, раство-

ритель подкисленный 79.6% этанол  

антоцианы 60.5 мг Сy3GE /г 
СВ 

[62] 

Кожура граната полифенолы, в т.ч. а-
пуникалагин, b-пу-

никалагин, эллаговая 
кислота 

УЗ ванна, мощность 180 Вт, частота 
37 кГц, режим обработки непрерывный 

или импульсный, время 20 мин, темпера-
тура 50–60 °С, растворитель 70% этанол 

общие фенолы 140–256 мг 
GAE/г сухого образца 

[63] 

Виноградные 
выжимки 

антоцианы, полифе-
нолы 

УЗЭ генератор, температура 50 °С, рас-
творитель смесь вода-этанол 

антоцианы 4.50 мг/г образца; 
фенольные вещества 

59.95 мг GAE/г образца 

[69] 

Ягоды клубники антоцианы  УЗЭ модифицированная, мощность 120 
Вт, частота 62–64 кГц, время 12 мин, 
температура 45 °С, растворитель 55% 

этанол, соотношение растворитель : об-
разец 6 мл/г  

антоцианы 796.9 мкг/г  

Ягоды черно-
плодной ря-
бины, брусники, 
черники, ма-
лины, вишни, 
черной сморо-
дины  

антоцианы, фенолы, 
флавоноиды 

УЗЭ, частота 3.7·105 Гц, температура 
37 °С, растворитель смесь 98% эта-

нол : вода в соотношении 1 : 1  

антоцианы, мг ЦГ/100 г исход-
ного сырья: черноплодная ря-
бина 859, черная смородина 
112, вишня 110 мг, черника 

122, брусника 89, малина 83;  
фенолы, мг ГК/100 г сырья: 

брусника 1378, черноплодная 
рябина 1310, черная смородина 
874, вишня 858, черника 821, 

малина 730; 
флавоноиды, мг К/100 г сырья: 
черноплодная рябина 442, ма-

лина 92, черника 274, брусника 
172, черная смородина 101, 

вишня 147  

[80] 

Жмых черники антоцианы, в т.ч. 
мальвидин, дель-

финидин, петунидин, 
цианидин; фенолы, 

флавоноиды 

УЗ ванна, мощность 64 Вт, частота 35 
кГц, температура 40 °C, вариант 1 – 

время 60 мин, растворитель – вода, pH 
5.0, соотношение растворитель : образец 
20 : 1; вариант 2 – время 40 мин, раство-
ритель – 50% этанол, pH 6.3, соотноше-

ние растворитель : образец 15 : 1 

TAC 31.32 мг/г СВ, 
TPC 22.33 мг/г СВ,  
TFC 19.41 мг/г СВ  

[81] 

Жмых черники  10 видов антоцианов, 
в т.ч. дельфинидин, 
петунидин, мальви-

дин 

УЗЭ, мощность 325 Вт, импульсный ре-
жим, время 3.2 мин, температура 349.15 
К (76 °С), растворитель NADES (хлорид 

холина – щавелевая кислота (ChOa) – 
глубокий эвтектический растворитель), 
соотношение растворитель : образец 60 

мл/г  

антоцианы  
24.27±0.05 мг C3GE/г СВ  

[84] 

Замороженные 
ягоды черной 
смородины, 
клюквы красной 
черники, китай-
ского лимонника 

антоцианы в эквива-
ленте мальвидин-3-

гликозида 

1) непрямая УЗЭ (УЗ ванна), мощность 
80 Вт, частота 35 кГц, время 30 мин; 

2) прямая УЗ (УЗ гомогенизатор), мощ-
ность 75 Вт, частота 20 кГц, время 15–
20 мин. Растворитель смесь 96% эта-

нол : вода в соотношении 1 : 20, темпе-
ратура 25–65 °С 

антоцианы 2.37–3.01 мг/мл экс-
тракта 

[85] 
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Окончание таблицы 1 
1 2 3 4 5 

Жмых клюквы общие антоцианы, в 
т.ч. цианидин-3-га-

лактозид, цианидин-
3-арабинозид, пеони-

дин-3-галактозид, 
пеонидин-3-арабино-
зид, общие феноль-

ные соединения  

давление 50 бар, 60–120 °C с постоян-
ным расходом 5 мл/мин, время 10 мин, 

растворитель 30–100% этанол  

антоцианы 6.02–8.42 мг Cy3GE 
СВ 

фенолы 84.96±7.82 мг GAE СВ 

[87] 

Клюква 7 видов антоцианов, 
в т.ч. пеонидин-3-(6-
малон)-глюкозид, пе-
ларгонидин-3-(6-ма-

лон)-глюкозид 

УЗЭ, мощность 310 Вт, время 33 мин, 
температура 53 °С, растворитель 52% 

этанол  

7.25±0.02 мг/г [89] 

Прессованные 
остатки амери-
канской клюквы 

антоцианы: циани-
дин-3-О-арабинозид, 
пеонидин-3-О-галак-
тозид, пеонидин-3-

О-глюкозид и пеони-
дин-3- О-арабинозид 

УЗЭ, мощность 100 Вт и 360 Вт, темпе-
ратура 30 °С, растворители 96% этанол, 
0.5% трифторуксусная кислота, соотно-

шение растворитель : образец 100 : 1 

общие антоцианы, мг/г СВ 
0.135±0.003 (100 Вт), 
0.147±0.004 (360 Вт), 

цианидин-3-О-галактозид 
1.73±0.17, цианидин-3-О-глю-

козид 0.06±0.01, цианидин-3-О-
арабинозид 3.07±0.31, пеони-
дин-3-О-галактозид 3.04±0.21, 

пеонидин-3-О-глюкозид 
0.36±0.04, пеонидин-3-О-араби-

нозид 2.31±0.23 

[91] 

Сокращения: TAC – общее содержание антоцианов, Cy3-gal – цианидин-3-О-галактозид, ЦГ, Cy3GE – цианидин-3-О-
глюкозид, TPC – общее содержание фенолов, GAE, ГК – эквивалент галловой кислоты, К – эквивалент кверцетина, 
TFC – общее содержание флавоноидов, СВ – сухое вещество (сухой образец) 

Флавоноиды и антоцианы из луковой шелухи. Лук – один из основных ингредиентов, используемых 
в составе пищевых продуктов [3]. Переработку этого овоща сопровождает накопление большого объема 
отходов в виде луковой шелухи, что создает нагрузку на окружающую среду. Из-за серосодержащих соеди-
нений, которые придают луку характерный аромат, эти отходы не подходят для кормления животных или 
утилизации на свалках [3]. Рациональное использование луковой шелухи позволит производить продукцию 
с высокой добавленной стоимостью благодаря большому количеству флавоноидов и антоцианов [2]. В 
группу флавоноидов входит кверцетин и его производные, которые обладают полезными свойствами [1, 3, 
21, 92–96]. Экстракты из луковой шелухи используют в технологии получения пищевых продуктов, напри-
мер, выпечки, лапши или макарон, мясных изделий, красителей и осветлителей сока [2, 21, 97–99]. Сравни-
вая различные сорта, во внешних слоях красного лука регистрируют относительно высокое содержание ан-
тиоксидантов [23]. Основным пигментом кожуры красного лука является цианидин-3-глюкозид [3]. 

Состав экстракта луковой шелухи зависит от сорта, региона выращивания и агрономических условий, 
а также методов извлечения. Пигменты, полученные из луковых отходов, стабильны при хранении в широ-
ком диапазоне кислотности среды, а при значениях рН, превышающих 5 единиц, наблюдали усиление цвета 
экстракта [23]. Интенсивность окраски также зависит от присутствия циклодекстринов и температуры хра-
нения [100]. Для извлечения веществ из вторичного сырья лука используют разные методы [3, 100]. УЗЭ 
также применили для извлечения соединений из шелухи лука, варьируя частоты и режим обработки [40, 
101]. Этот метод экстракции в водный раствор 70% этилового спирта обеспечивает более эффективное из-
влечение веществ, чем традиционные методы [21, 92, 93]. Экстрагирующий состав на основе водного рас-
твора глицерина также может быть использован для извлечения посредством ультразвука полифенолов и 
пигментов из твердых отходов лука [1]. Традиционная экстракция растворителем и УЗЭ обеспечивали сход-
ные профили фенольных соединений. Отметим то, что богатый флавоноидами (21%) порошок, полученный 
в результате лиофилизации экстракта, сохранял 90% антиоксидантной активности после 180 дней хранения 
при температуре не выше 4 °C [98]. Способы и условия ультразвуковой экстракции флавоноидов и антоци-
анов лука представлены в таблице 2. 
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Таблица 2. Ультразвуковая экстракция флавоноидов лука 
Растительное 

сырье 
Экстрагируемое веще-

ство (вещества) 
Условия экстракции Выход целевых веществ Ис-

точ-
ник 

Шелуха 
красного 
лука 

общие фенолы, 
общий выход пигмента в 
эквиваленте цианидина-

3-О-глюкозида (CyE) на г 
сухого образца 

УЗЭ, мощность 140 Вт, частота 
37 кГц, плотность акустической 
энергии 35 Вт/л, время 60 мин, 

температура 45 °C, растворитель 
глицерин 90% (по массе), соот-
ношение растворитель : образец 

90 мл/ г 

фенолы 64.91 мг GAE/ г СВ,  
пигмент 1.86 мг CyE/ г СВ 

[1] 

Шелуха жел-
того лука 

общие фенолы,  
общие антоцианы 

УЗЭ ванна, мощность 150 кВт, 
температура 30, 40, 50 °C, время 

обработки 10, 20, 30 мин, рас-
творитель 50, 75, 100% этанол, 
соотношение растворитель : об-

разец 10 мл/г 

ТРM от 24.80 до 33.83 мг GAE/г, 
ТМА от 7.86 до 17.63 мг 

C3G/100 г образца 

[40] 

Шелуха 
красного 
лука 

флавоноиды, антоцианы, 
фенолы 

УЗЭ, мощность 150 Вт, частота 
40 кГц, амплитуда 70%, импуль-
сный режим 5 с УЗ – 5 с интер-
вал – 5 с УЗ; температура 51–

58 °С, время 15–25 мин, раство-
ритель 70% этанол 

флавоноиды Σ 147 мг QE/г СВ,  
антоцианы Σ 1160 мг Cyn-3-

OG/100 г СВ,  
фенолы Σ 9600 мг GAE/100 г СВ  

[93] 

Шелуха зо-
лотистого 
(коричне-
вого) лука 

кверцетин, кверцетин-4′-
О-глюкозид, флавоноиды 

УЗЭ, энергия 10 кДж/г СВ, ам-
плитуда 40%, время обработки 

менее 5 мин, температура 37 °C, 
растворитель этанол 70%, соот-
ношение растворитель : образец 

30 мл/г  

флавоноиды 23.9±0.2 мг QE/г 
СВ, производительность УЗЭ 
кверцетина и кверцетин-4′-О-

глюкозида 11.6 мг QE/г СВ•мин 

[98] 

Шелуха лука гликозиды флавоноидов, 
агликоны флавоноидов: 
протокатехиновая кис-

лота; кверцетин-3,4`-ди-
глюкозид; мирицетин; 

изорамнетин-3,4`-диглю-
козид; феруловая кис-

лота; ванильная кислота; 
кверцетин-4`-глюкозид; 
изорамнетин-4`-глюко-
зид; кверцетин; изомер 

кверцетина 

УЗЭ ванна, мощность 550 Вт, 
плотность УЗ мощности 50 Вт/л, 
частота 25, 33, 45 кГц, темпера-
тура 25 °C, время обработки 10 

мин, растворитель 80% метанол, 
соотношение растворитель: об-

разец10 мл/г, после УЗ обра-
ботки перемешивание в течение 

1 или 16 ч при 1600 об./мин. 

при 45 кГц извлекаются глико-
зиды флавоноидов, при 25 кГц с 
длительным перемешиванием – 

агликоны 

[101] 

Сокращения: TFC – общее содержание флавоноидов, QE – эквивалент кверцетина, TAC, TAM – общее содержание 
антоцианов, CyE, C3G, Cy3GE, Cyn-3-OG – цианидин-3-О-глюкозид, TPC, TPM – общее содержание фенолов, GAE – 
эквивалент галловой кислоты, СВ – сухое вещество (сухой образец) 

Каротиноиды. Каротиноиды – группа природных пигментов, содержащихся в растениях, грибах, во-
дорослях, бактериях, которые играют значимую роль в пищевой промышленности. Благодаря высокому ан-
тиоксидантному потенциалу, эти пигменты относят к полезным для здоровья человека [11, 32]. Этот вид 
веществ в основном используются в качестве пищевых красителей при производстве сыров, напитков, мо-
лочных продуктов [61], изготовлении сливочного и растительных масел, заправок для салатов, мороженого, 
кондитерских изделий, мясных продуктов [32]. В результате наблюдается рост интереса к использованию 
натуральных каротиноидов [102] и развитие технологии их извлечения [24]. 

Каротиноиды подразделяют на два основных класса [32, 102]. В первый входят соединения, состоя-
щие из углеводородной цепи без каких-либо функциональных групп, например, ликопин, бета-каротин. 
Второй класс объединяет ксантофиллы, молекулы которых содержат кислородсодержащую группу, напри-
мер, лютеин и зеаксантин. В зависимости от наличия полярных групп различают гидрофобные и гидрофиль-
ные каротиноиды [102]. Каротиноиды природного происхождения окрашивают продукты в желтый, оран-
жевый и красный цвет [31]. Степенью сопряженности объясняют разную по оттенку окраску пигментов, 
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например, более крупным молекулам соответствуют самые красные оттенки. На цвет влияет степень цик-
лизации, что объясняет, почему ликопин, β-каротин и γ-каротин при одинаковом количестве двойных связей 
имеют красный, оранжевый и красно-оранжевый цвета соответственно [61]. Благодаря химической струк-
туре каротиноиды очень чувствительны к окислению и изомеризации, что следует учитывать при перера-
ботке и хранении пищевых продуктов [74, 103]. 

Для извлечения каротиноидов используют побочные продукты переработки моркови [104–106], гра-
ната [107], апельсина [108], мандарина [17], тыквы [32, 109], томатов [38, 110], семян аннато [35]. Кароти-
ноиды получают экстрагированием из растительного сырья с применением органических растворите-
лей [11, 32, 102]. Для экстракции неполярных каротиноидов используют гексан, хлороформ, петролейный 
эфир и тетрагидрофуран, для полярных − ацетон, этанол, этилацетат, бутилгидрокситолуол, изопропа-
нол [32, 102]. Многие из перечисленных веществ опасны для человека и окружающей среды, так как ток-
сичны, взрывоопасны, легко воспламеняются [102]. Альтернативой органическим растворителям служат 
растительные масла, эвтектические растворители, ионные жидкости или лимонен, отвечающие принципам 
«зеленой» химии [32, 108, 111]. Как правило, их применяют в сочетании с ультразвуковой, микроволновой 
и другими современными способами экстракции [108, 112]. Такая комбинация дает преимущества за счет 
упрощения удаления растворителя и очистки целевого продукта. 

Ультразвуковая обработка – пример «зеленой» технологии экстракции каротиноидов [24]. Сравни-
тельные исследования показали преимущество УЗЭ при выделении пигментов из отходов граната [107], 
яблока кешью [112] и томатной выжимки [24, 110]. Процесс УЗЭ общих каротиноидов из эпикарпа манда-
рина был оптимизирован, что позволило предложить эти экстракты взамен синтетического красителя тарт-
разина [17]. Авторы данной публикации считают, что УЗЭ является наиболее эффективным методом для 
получения нестабильных фитосоединений. Обнаружено, что такой подход ускоряет процесс извлечения фи-
тохимических веществ из семян аннато, увеличивает выход целевого продукта и снижает потребление энер-
гии [35, 113]. Подтверждено положительное влияние УЗЭ на сохранность антиоксидантной активности и 
эффективность экстракции из тыквы, когда общее количество каротиноидов увеличилось почти вдвое [109]. 
Для улучшения качества пигмента, полученного из моркови, полезной оказалась предобработка исходного 
сырья ультразвуком [52, 114]. Некоторые режимы экстракции каротиноидов представлены в таблице 3. 

Беталаины. Беталаины представляют группу растворимых в воде пигментов, которые определяют 
цвет плодов, например, красной свеклы, опунции, папайи, амаранта и других [24, 38]. Описано извлечение 
беталаинов из кожуры красного драконьего фрукта и колючей груши [18]. Структура беталаинов, как азот-
содержащих гетероциклических соединений, в своей основе содержит ядро беталаминовой кислоты [24]. 
Эти пигменты образуют две основные группы: красно-фиолетовых бетацианинов и желто-оранжевых бе-
таксантинов [38], которые соединяются с моно- или дисахарами, образуя в результате ацилирования не-
сколько видов бетацианидных гликозидов. Различные цветовые фенотипы овощей обусловлены соотноше-
нием в них содержания бетацианинов и бетаксантинов [24]. Беталаины стабильны в широком диапазоне рН 
(3–7), поэтому цвет этих пигментов практически не зависит от кислотности среды. Однако на их стабиль-
ность влияют такие факторы, как температура, свет и кислород [74, 115]. 

Фитохимические вещества свеклы обладают биологически активным потенциалом, способствуя сни-
жению риска ряда заболеваний [116–121]. Показано, что добавки беталаина полезны при заболеваниях, свя-
занных с дислипидемией, окислительным стрессом и воспалением [9, 122–125]. Беталаины применяются 
для окрашивания продуктов в красно-фиолетовые и желто-оранжевые цвета [126]. Они могут использо-
ваться в низкокислотных продуктах питания, таких как молочные продукты (йогурт и мороженое), в сиро-
пах, колбасах и кондитерских изделиях [61], а также в составе пищевой упаковки [127]. Одним из богатей-
ших источников беталаинов служит красная свекла [128–130], где содержание пигментов варьирует в зави-
симости от вида, сорта или условий выращивания корнеплода [24]. Годовое мировое производство свеклы 
в 2018 году составило 274 млн тонн [126]. Около 70% мирового производства свеклы сосредоточено в Ев-
ропе, а Россия входит в пятерку ведущих производителей [24, 126].  

УЗЭ успешно применяют для экстракции беталаинов из побочных продуктов переработки, например, 
из стеблей красной свеклы [24, 131]. В цитируемой публикации показано, что максимальный выход веще-
ства получен при повышении температуры до 55 °C, мощности ультразвука 100 Вт, времени экстракции 38 
мин и соотношении твердой и жидкой фаз 1 : 25 соответственно. Похожие параметры получены для УЗЭ 
корнеплода [123] или листьев свеклы [132]. В последней работе при оптимальных условиях выход веществ 

https://www.sciencedirect.com/topics/food-science/carotenoid
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составил 562 мкг/г (бетацианины), 949 мкг/г (бетаксантины) и 15 мг/г (полифенолы). Показана перспектив-
ность применения полуфабрикатов свеклы для производства натуральных пищевых красителей [128]. В ка-
честве источника сырья использовали высушенную цельную свеклу, а также влажный или высушенный жом 
свеклы притом, что для высушенных образцов характерна более высокая эффективность экстракции бета-
лаинов и полифенолов. В течение хранения экстрактов при комнатной температуре беталаины деградиро-
вали, но содержание полифенолов и антиоксидантная активность меньше подвергались влиянию темпера-
туры. Эффективность бинарной смеси (этанол/вода) при извлечении бетанина изучали на примере алжир-
ской свеклы [133]. Отмечено, что водный экстракт содержит бетанидин, а спиртовой − бетанин, где количе-
ство бетанина варьирует в зависимости от соотношения используемых растворителей. В другом исследова-
нии оценили эффективность УЗЭ для извлечения беталаинов из кожуры красной свеклы [134]. Сравнивали 
только продолжительность двух интервалов экстракции (30 и 60 мин). Выход бетаксантинов при экстракции 
был выше при относительно короткой экспозиции, но временной интервал не влиял на извлечение бетаци-
анинов. УЗЭ увеличила выход экстрактов в 4.5 раза для бетацианинов и в 2 раза для бетаксантинов. Анало-
гичная работа проведена для экстракции беталаинов из отходов, полученных в результате производства сока 
красной свеклы [24, 128]. Авторы выделили 30% водный раствор этанола как лучший растворитель для экс-
тракции, который обеспечивал максимальное восстановление пигментов. Данные о режимах УЗ экстракции 
беталаинов приведены в таблице 4. 

Таблица 3. Ультразвуковая экстракция каротиноидов 
Раститель-
ный источ-

ник 

Экстрагиру-
емые веще-

ства 
Условия экстракции Выход целевых веществ 

Ис-
точ-
ник 

1 2 3 4 5 
Эпикарп  
мандарина 

общие каро-
тиноиды 

УЗЭ, мощность 240 Вт, частота 42 кГц, 
время 60 мин, температура 60 °С, раствори-
тель подсолнечное масло, соотношение об-

разец : растворитель 0.0004 г/мл 

140.70±2.66 мг β-каротина/100 г 
СВ 

[17] 

Морковь каротино-
иды 

Предобработка (для дальнейшей сушки) 
моркови, смоченной в дистиллированной 
воде, в вакуумных пакетах в УЗ ванне: ча-
стота 21 и 35 кГц, время 10, 20 и 30 мин, 

температура 25 °C 

увеличение содержания каротино-
идов в высушенном материале, об-
работанном УЗ при частоте 21 кГц 

в течение 10 и 20 мин, на 22 и 
44%, соответственно, по сравне-

нию со свежим материалом 

[52] 

Жмых  
моркови 

β-каротин, 
фенольные 
соединения 

Электрогидродинамическая (EHD) предоб-
работка (напряжение 20 кВ, время 20 мин) и 

УЗЭ, мощность 500 Вт, частота 20 кГц, 
время 80 мин, температура 30 °C, раствори-
тель 96% этанол, соотношение образец : рас-

творитель 10 : 100 г/мл 

β-каротин 415.28±0.56 мг/л; 
433.42±1.86 мг/л, общее содержа-

ние фенольных соединений 
151.48±76 мг/л; 155.42±7.73 мг/л; 

выход экстракции 9.15±0.25; 
9.70±0.10% 

[104] 

Жмых  
моркови 

общие каро-
тиноиды, β-
каротин, лю-
теин, лико-

пин 

– экстракция общих каротиноидов: УЗЭ, 
время 17 мин, температура 32 °С, раствори-

тель 51% этанол; 
– экстракция комбинации β-каротина, люте-
ина и ликопина: УЗЭ, время 16 мин, темпе-

ратура 29 °С, растворитель 59% этанол 

общее количество каротиноидов 
31.82±0.55 мкг/г, 

β-каротин 14.89±0.40 мкг/г, 
лютеин 5.77±0.19 мкг/г,  
ликопин 2.65±0.12 мкг/г 

[105] 

Жмых  
моркови 

каротино-
иды 

УЗЭ, мощность 350 Вт, температура 50 °C, 
время 12.5 мин, растворитель олеиновая 

кислота, соотношение растворитель : обра-
зец 39 мл/г  

163.43±1.83 мкг/г [106] 

Кожура  
граната 

каротино-
иды 

УЗЭ погружной зонд, мощность 130 Вт, ча-
стота 20 кГц, амплитуда 58.8%; импульсный 
режим, время 30 мин, температура 51.5 °C; 
растворитель подсолнечное масло, соотно-

шение образец : растворитель 1 : 10  

0.3255 мг/100 г СВ [107] 

Цедра  
апельсина  

каротино-
иды 

экстракция ионной жидкостью 1-бутил-3-
метилимидазолия хлорид ([BMIM] [Cl]) 

32.08±2.05 мкг/г [108] 
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Окончание таблицы 3 
1 2 3 4 5 

Мякоть и ко-
жура тыквы 

общие каро-
тиноиды, об-
щие фенолы 

погружной УЗ зонд, амплитуда 20%, им-
пульсный режим, время 30 мин, температура 

22–25 °C, растворитель кукурузное масло, 
соотношение образец : растворитель 1 : 10  

каротиноиды: мякоть 28.01–
32.69 мкг/г экстракта, кожура 
33.78–38.03 мкг/г экстракта; 

фенолы: мякоть 524.48–555.2 мг 
GAE/г экстракта, кожура 547.94–

588.68 мг GAE/г экстракта 

[109] 

Томатные  
отходы 

ликопин комбинированная обработка сублимацион-
ной сушкой при -40 °C и УЗ (частота 50 Гц, 
время обработки 45 мин, температура ком-
натная), растворитель смесь гексан : аце-
тон : метанол : толуол 10 : 7 : 6 : 7 по объ-

ему/объему; соотношение растворитель : об-
разец 10 г : 30 мл 

ликопин:  
УЗЭ: 45.51±1.84 мкг/г свежей 
массы, УЗЭ + сублимационная 

сушка: 138.82±6.64 мкг/г свежей 
массы  

[110] 

Яблоко  
кешью 

β-каротин УЗ ванна, мощность 80 Вт, частота 40 кГц, 
время 19 мин, растворитель смесь 44% аце-

тон : 56% метанол 

144.67–165.47 мкг/г [112] 

Семена  
аннато 

биксин, по-
лифенолы: 
катехин, 

хлорогено-
вая кислота, 
хризин, бу-
теин, гипо-
лаэтин, ли-
кохалкон А, 
ксантогумол  

УЗЭ, мощность 320 Вт, частота 37 кГц, 
время 20 мин, растворитель абсолютный 

этанол, рН 7.0, соотношение образец : рас-
творитель 1 : 7  

0.62% биксина,  
3.81 мг GA/г семян  

[113] 

Морковь  общие каро-
тиноиды 

УЗЭ ванна, мощность 180 или 300 Вт, ча-
стота 21 или 40 кГц, время 60 или 180 с, тем-
пература окружающей среды, растворитель 
96% этанол, соотношение образец : раство-

ритель 1 : 2 

повышение ТСС в моркови после 
УЗ в этаноле по сравнению с ис-

ходным материалом 
(53.60±4.78 мг/100 г СВ): 

– 60 с при частоте 21 кГц – на 
32%, при частоте 40 кГц – на 44%;  

– 180 с при частоте 21 кГц – на 
104%, при частоте 40 кГц – на 

144% 

[114] 

Сокращения: ТСС – общее содержание каротиноидов, мг/100 г СВ; GA – галловая кислота, СВ – сухое вещество (су-
хой образец). 

Таблица 4. Способы экстракции беталаинов свеклы 
Растительное 

сырье 
Экстрагируемые 

вещества Условия обработки Выход целевых веществ Источ-
ник 

1 2 3 4 5 
Сушеная цель-
ная свекла, су-
шеный свекло-
вичный жом 

беталаины, поли-
фенолы 

УЗ ванна, мощность 35 Вт, ча-
стота 44 кГц, время 30 мин, тем-

пература 30 °C, растворитель 
смесь этанол : вода 30% 

беталаины до 3 мг/г,  
соотношение бетацианина к 

бетаксантину 1–1.35  

[128] 

Кожура свеклы беталаины, поли-
фенолы 

экстракция растворителем: 
смесь лимонная кислота 

1.5% : этанол 50%, температура 
52.52 °С, время 49.9 мин 

беталаины 1.2 мг/г сухой 
массы,  

полифенолы 2.39 мг/г сухой 
массы 

[129] 

Кожура свеклы беталаины, бета-
цианин, бетак-

сантин 

микроволновая экстракция, 
мощность 800 Вт, время 150 с, 

температура 30–70 °С, раствори-
тель вода  

общее количество беталаинов 
202.08±2.23 мг/100 г сырой 

массы, бетацианин 
115.89±1.08 мг/100 г сырой 

массы; бетаксантин 
86.21±1.16 мг/100 г сырой 

массы 

[130] 
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Окончание таблицы 4 
1 2 3 4 5 

Стебли красной 
свеклы 

бетацианин, бетак-
сантин 

УЗ погружной зонд, мощность 
89 Вт, время 35 мин, температура 
53 °C, растворитель вода, соотно-
шение образец : вода 1 г : 19 мл 

бетацианин 1.28±0.02 мг/г,  
бетаксантин 5.31±0.09 мг/г 

[131] 

Листья свеклы беталаины, поли-
фенолы 

УЗ погружной зонд, мощность 
90 Вт, частота 20 кГц, время 

16 мин, растворитель вода, соот-
ношение образец : растворитель 

1 : 20  

полифенолы 14.9 мг/г, бетак-
сантины 949.1 мкг/ г, бетациа-

нины 562.2 мкг/ г 

[132] 

Алжирская 
красная свекла 

бетанин растворитель : смесь этанол 
20% : вода 80%, температура 

25 °С 

бетанин 3.42·10-4 г/мл [134] 

Кожура красной 
свеклы  

общие беталаины, 
в т.ч. бетацианины 

и бетаксантины, 
общие фенолы 

УЗ ванна, мощность 200 Вт, ча-
стота 37 кГц, время 30 и 60 мин, 
растворитель дистиллированная 
вода, соотношение образец : рас-

творитель 1 : 20 мас./об. 

общие фенолы 44–47 мг ГК/г 
СВ, бетацианины 3.84–3.87 мг 
бетанина/г СВ, бетаксантины 

6.98–8.61 мг вулгаксантина /г СВ 

[134] 

Заключение 

Традиционным сырьем для выделения пигментов служат ягоды, плоды овощей и фруктов, корне-
плоды. Экономически выгодным источником природных пигментов для отечественной пищевой промыш-
ленности являются доступные и относительно недорогие побочные продукты переработки растительного 
сырья – отходы переработки клюквы, черники и других ягод, репчатого лука, моркови, свеклы. В этом 
направлении проводятся исследования с целью разработки оптимальных методов извлечения целевых ве-
ществ из вторичных растительных ресурсов.  

В рассмотренных исследованиях источниками антоциановых пигментов служили ягоды или ягодные 
смеси, жмых, оставшийся после отделения сока, кожура граната и плодов цитрусовых. Для извлечения це-
левых веществ в качестве растворителей применяли главным образом 30–100% этанол, смесь этанола с три-
фторуксусной кислотой. К перспективным и экологичным экстрагентам относится глубокий эвтектический 
растворитель, например, NADES (хлорид холина – щавелевая кислота, ChOa), использованный для УЗЭ ан-
тоцианов из жмыха черники. Мощность УЗЭ обработки варьирует в нескольких наиболее часто встречаю-
щихся интервалах значений: 64–80, 100–180, 310–325 Вт, в единственном из исследованных источников 
указана обработка мощностью 600 Вт для оттаивания ягод черники, предварительно замороженных в жид-
ком азоте. Частота ультразвука в основном составляет от 20 до 64 кГц. Разброс температуры – в пределах 
25–76 °C, продолжительность обработки зависит от остальных условий, изменяется в интервале 3.2–15, 20–
60 мин. 

Переработка лука является быстрорастущим и высокоотходным производством, вследствие чего объ-
емы луковой шелухи накапливаются с высокой интенсивностью. Шелуха лука богата флавоноидами и дру-
гими ценными фитохимическими веществами, поэтому актуален поиск эффективных способов ее рацио-
нального использования. УЗЭ луковой шелухи проводили с применением, главным образом, 70% этанола, 
а также 90% глицерина при мощности обработки 100–150 Вт, частоте 25–45 кГц, температуре 37–58 °C, в 
течение 15–25 мин. 

К основным источникам каротиноидов относятся морковь и морковный жмых, кожура тыквы, апель-
сина, мандарина, томатов. УЗ экстракцию жирорастворимых каротиноидов ведут в среде подсолнечного 
или кукурузного масла, олеиновой кислоты, но также этанола или смеси полярных (метанол, ацетон) и не-
полярных растворителей (гексан, толуол). В качестве зеленых растворителей рассматриваются ионные жид-
кости, такие как 1-бутил-3-метилимидазолия хлорид. Значения мощности обработки находятся в интервалах 
80–130 Вт или 240–500 Вт, частоты – 20–42 кГц, в случае комбинированной обработки УЗЭ и сублимаци-
онной сушки при -40 °С использовали частоту 50 Гц. Процесс, как правило, ведут при комнатной темпера-
туре или при нагревании не выше 60 °С. Минимальная продолжительность обработки составляла 12.5 мин, 
максимальная – 80 мин. 
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Для извлечения беталаинов использовали как цельную свеклу, так и продукты ее переработки − ко-
журу, листья и стебли. В качестве растворителей применяли воду, смеси этанола с водой или раствором 
лимонной кислоты. Режимы обработки предусматривали мощность УЗ в интервале 35–800 Вт, частоту 20–
44 кГц, процесс вели при температуре 30–70 °C в течение 2.5–60 мин. 

Метод УЗЭ занимает устойчивую позицию среди наиболее перспективных методов экстракции пиг-
ментов из растительного сырья. Этот подход, наряду с высоким выходом экстрагируемых веществ, снижает 
потребление энергии и технологических ресурсов. Комбинирование УЗЭ с «зелеными» растворителями для 
извлечения пигментов рассматривают в качестве экологически чистого способа более полной утилизации 
отходов переработки фруктов и овощей. 
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This review summarizes and analyzes methods for isolating plant pigments (anthocyanins, betalains, carotenoids) by 

ultrasonic extraction from secondary plant resources in the food industry. Extracting dyes from plant waste makes it possible to 
simultaneously improve the depth of processing of raw materials, reduce the burden on the environment and increase the pro-
duction volumes of natural dyes. In addition, plant pigments are low-molecular substances that have the functions of physiolog-
ically active compounds. The review presents materials from the Scopus (scopus.com), Google Scholar (scholar.google.ru) and 
RSCI (elibrary.ru) databases, published mainly for the period 2019-2023. Articles devoted to the extraction of coloring sub-
stances from waste processing of food plant raw materials and the advantages of ultrasonic extraction were analyzed. 134 articles 
were analyzed, of which 41% of publications were published in the last two years. 

The advantages of ultrasonic extraction are shown, including the ability to eliminate the use or significantly reduce the 
volume of organic solvents, allowing this method to be defined as a “green” technology. The emphasis is on secondary raw 
materials, common in our country, which accumulate after processing cranberries, onions, carrots, and beets. Works devoted to 
the study of the influence of ultrasound on the extraction of plant pigments confirm the relevance of the research topic. A number 
of promising areas include: improvement of the ultrasonic extraction method, including optimization of processing methods and 
modes, as well as the search for effective combinations of ultrasound with other gentle extraction methods. 

Keywords: secondary plant resources, anthocyanins, carotenoids, betalains, quercetins, ultrasonic extraction. 
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