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Исследован процесс влажной торрефикации скорлупы фундука в кипящем слое, в том числе в кипящем слое, 

содержащем 20–50% катализатора – оливинового песка. Показано, что без применения катализатора при изменении 
температуры процесса торрефикации от 200 до 300 °С влажность образца снижается на 70.7%, зольность возрастает в 
4.2 раза, содержание углерода в образце увеличивается на 18.5%, содержание кислорода уменьшается на 11.7%, а теп-
лота сгорания образца биоугля возрастет на 16.9%. Применение оливинового песка не оказывает заметного влияния на 
химический состав биоугля в сравнении с биоуглем, полученным при влажной торрефикации без применения катали-
затора. Но применение катализатора и увеличение его доли в кипящем слое существенно снижают необходимую про-
должительность процесса и несколько увеличивают потери масса образца при торрефикации в сравнении с процессом, 
ведущимся без применения катализатора. Без применения катализатора энергия активации образца скорлупы фундука 
при влажной торрефикации составляет 20.48 кДж/моль. Наличие в слое 20% катализатора увеличивает энергию актива-
ции до 32 кДж/моль; при наличии в слое 50% частиц оливинового песка (по массе) энергия активации скорлупы фундука 
возрастает до 50 кДж/моль. 
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Введение  

В последние годы в мире возникла угроза разрушения глобальной экосистемы и в связи с этим уве-
личился интерес к таким вопросам, как экологическая устойчивость, ограничение отходов и применение 
принципов экономики замкнутого цикла. Экономика замкнутого цикла – это не просто переработка отходов, 
это преобразование того, что считалось отходами, в высокоценные ресурсы.  

В этом контексте многие исследователи сосредоточили свою работу на использовании остатков сель-
скохозяйственной продукции в качестве функциональных ингредиентов для производства новых продуктов 
питания и в качестве альтернативного источника биологически активных ингредиентов/добавок. Остатки 
сельскохозяйственной продукции или отходы агропищевой цепочки содержат лигнин (40–51%), гемицел-
люлозу (13–32%) и целлюлозу (17–27%) [1–6]. В этом смысле данный побочный продукт отлично вписыва-
ется в концепцию биопереработки, основанной на выборочном разделении основных компонентов сырья с 
последующим превращением их в новые материалы, химикаты и энергию [7]. Ожидается, что в будущем 
производство химикатов будет все больше основываться на растительной биомассе [8], и переработка лиг-
ноцеллюлозы станет ключевым компонентом промышленного сектора.  

В последние годы внимание многих исследователей сфокусировалось на гемицеллюлозной фракции, 
извлеченной из отходов агропищевой цепочки. Исследования выявили наличие очень интересных соедине-
ний, которые могут открыть новые способы использования этих отходов. Гемицеллюлоза в этих отходах в 
основном состоит из ксиланов [3, 4, 6, 9, 10]. Ксиланы имеют потенциал как источник для производства 
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ксило-олигосахаридов (XOS) методом автогидролиза [3]. Кроме того, другой тип олигосахаридов (OS), а 
именно арабино-ксилоолигосахариды (AXOS), был также идентифицирован в отходах агропищевой це-
почки [10]. (A)XOS могут быть получены из основных компонентов ксилана и их точная химическая струк-
тура изменяется в зависимости от процесса извлечения и источника, откуда они получены.  

Первым шагом к созданию функциональной пищевой продукции на основе пребиотиков из отходов 
агропищевой цепочки является извлечение (A)XOS. Очень важным этапом является предварительная обра-
ботка, например, измельчение, требующееся для уменьшения размера частиц и увеличения контактной по-
верхности лигноцеллюлозного материала [11]. После измельчения необходимо применять другие виды 
предварительной обработки для разложения структуры лигнина, что позволяет гемицеллюлозе подверг-
нуться процессу гидролиза [12]. Наиболее часто на промышленном уровне используют физико-химические 
методы, в основном гидротермальная обработка или влажная торрефикация, при которой биомасса обраба-
тывается горячей водой при высокой температуре. Обычно используются температуры в диапазоне от 160 
до 220 °C в сочетании с высоким давлением для поддержания воды в жидком состоянии в течение примерно 
15 мин [12].  

Процесс влажной торрефикации можно осуществлять в среде водяного пара [13]. Использование пе-
регретого пара в качестве агента карбонизации представляет большой интерес, поскольку позволяет прово-
дить быстрый и равномерный процесс обработки и легко извлекать летучие вещества [14, 15].  

Поскольку до процесса влажной торрефикации в среде перегретого водяного пара биомасса подвер-
гается измельчению, то было бы логичным проводить процесс влажной торрефикации в кипящем слое. Од-
нако кинетика процесса влажной торрефикации в кипящем слое в среде перегретого водяного пара иссле-
дована недостаточно.  

Целью настоящего исследования является изучение кинетики процесса влажной торрефикации скор-
лупы фундука в кипящем слое в среде перегретого водяного пара. При этом кипящий слой формировался 
как частицами скорлупы фундука, так и из смеси частиц скорлупы фундука и частиц простейшего катали-
затора – оливинового песка. 

Экспериментальная часть 

Скорлупа фундука была поставлена АО «Орехпром», Россия. Ее образцы анализировались согласно 
стандартам 14775:2009, EN 14774-3:2009, EN 15104:2011 и EN 15148:2009.  

Использовалось следующее оборудование: низкотемпературная лабораторная электропечь SNOL 
67/350, фирма «SNOL», Литва, электрическая печь SNOL 10/11-B, фирма «SNOL», Литва, анализатор угле-
рода, азота, водорода, серы, фирма «LECO», Германия, калориметр AБK-1., Россия. 

Использовался оливиновый песок, поставленный фирмой Northcape Mineral AS, Норвегия. Оливино-
вый песок имел насыпную плотность 1800–2000 кг/м3 и истинную плотность 3300 кг/м3. Частицы песка 
имели округлую форму; доля частиц размером 0.354–0.5 мм составляла 11.96%, частиц размером 0.25–0.354 
мм – 24.93%, частиц размером 0.177–0.250 мм – 31.9%, частиц размером от 0.125–0.177 мм – 17.95%. Хими-
ческий состав оливинового песка был следующим: MgO – 47–50%, SiO2 – 40–42%, FeO + Fe2O3 – 7–8%.  

Для торрефикации скорлупы фундука в кипящем слое в среде перегретого водяного пара использо-
валась установка [16], схема которой представлена на рисунке.  

Установка состоит из реактора для влажной торрефикации в кипящем слое, бункера для исходной 
биомассы, бункера для биоугля, циклона для отделения парогазового потока от частиц биоугля, выносимых 
из реактора, конденсатора парогазовой смеси. В реактор загружалось 2 кг скорлупы фундука и подавался 
перегретый водяной пар с температурой 200, 250 и 300 °С. Стенки реактора 1 обогревались электронагрева-
телями и в процессе экспериментов в реакторе поддерживалась необходимая температура (200, 250 и 
300 °С). С началом процесса влажной торрефикации с помощью газоанализатора «Vario Plus Industrial 
Syngas», установленным за конденсатором, непрерывно осуществлялся отбор неконденсируемых газов и 
определение содержания в них двуокиси углерода, окиси углерода, водорода и метана. На первой стадии 
эксперимента концентрация двуокиси углерода, окиси углерода, метана, и водорода в неконденсируемых 
газах возрастала и достигала максимума, а затем концентрация этих компонентов начинала снижаться и в 
конечном итоге достигала значений, которые были до начала процесса торрефикации. Мы считаем, что в 
этот момент торрефикация исходной биомассы завершалась, биоуголь выгружался из реактора, взвеши-
вался и подвергался анализу. 
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Рис. 1. Схема установки для торрефикации скорлупы фундука в кипящем слое в среде перегретого 
водяного пара 

Из-за большой разности в значениях насыпной плотности между оливиновым песком и измельченной 
скорлупой фундука возникла проблема с обеспечением устойчивого совместного псевдоожижения этих ма-
териалов. Была проведена серия экспериментов на «холодной» модели реактора для влажной торрефикации 
фундука. Было установлено, что устойчивое псевдоожижение смеси частиц измельченной скорлупы фун-
дука и оливинового песка возможно, если смесь содержит 50% оливинового песка и 50% измельченной 
скорлупы фундука или 20% оливинового песка и 80% измельченной скорлупы фундука [17]. Поэтому в 
дальнейших экспериментах с использованием оливинового песка использовались только эти смеси частиц. 

По аналогии с [18] константа скорости торрефикации оценивалась реакцией первого порядка [19]: 
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где Ms
0 – исходная масса образца скорлупы фундука; Ms – масса скорлупы фундука, полученная в процессе 

влажной торрефикации; k = константа скорости торрефикации, с-1; t – время, с. 
Уравнение Аррениуса [20] описывает зависимость константы скорости реакции торрефикации (k) и 

температуры (T): 
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или в логарифмической форме 
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RT
EAkT a−= ln)ln( , (4) 

где R – газовая постоянная, 8.314 Дж (моль·К)-1; T – температура, K; A – постоянная; Ea – энергия активации 
Дж·моль-1; k – константа скорости торрефикации, с-1. 

Энергия активации могла быть рассчитана, используя значения константы скорости торрефикации и 
уравнение Аррениуса.  

ln (k) представляет собой линейную функцию от 1/T [20]: 

y = ax + b, (5) 

где y = ln(k); b = ln A; a = Ea/R. 

Обсуждение результатов 

В таблицах 1–3 представлены характеристики исходной биомассы (скорлупы фундука), а также ха-
рактеристики полученных биоуглей в зависимости от температуры обработки и наличия катализатора, в том 
числе доли катализатора в кипящем слое. 

Как следует из таблиц 1–3, применение катализатора не оказывает заметного влияния на изменение 
химического состава скорлупы фундука в процессе влажной торрефикации. На изменение химического со-
става скорлупы фундука большее влияние оказывает температура процесса влажной торрефикации. 

При повышении температуры процесса влажной торрефикации с 200 до 300 °С без применения ката-
лизатора влажность образца (от исходной) снижается на 70.7%, зольность возрастает в 4.2 раза, содержание 
углерода в образце увеличивается на 18.5%, содержание кислорода уменьшается на 11.7%, а теплота сгора-
ния образца биоугля возрастет на 16.9%. Увеличение температуры процесса влажной торрефикации с 200 
до 300 °С приводит к сокращению необходимой продолжительности процесса на 10%, при этом потери 
массы образца при торрефикации увеличиваются в 2.3 раза. 

Применение оливинового песка не оказывает заметного влияния на химический состав биоугля в 
сравнении с биоуглем, полученным при влажной торрефикации без применения катализатора. При доле 
оливинового песка в кипящем слое в 20% при повышении температуры процесса влажной торрефикации с 
200 до 300 °С влажность образца (от исходной) снижается на 63.75%, зольность возрастает в 2.2 раза, со-
держание углерода в образце увеличивается на 17.5%, содержание кислорода уменьшается на 11.7%, а теп-
лота сгорания образца биоугля возрастет на 14.25%. В присутствии в кипящем слое 20% катализатора уве-
личение температуры процесса влажной торрефикации с 200 до 300 °С приводит к сокращению необходи-
мой продолжительности процесса в 1.93 раза, при этом потери массы образца при торрефикации увеличи-
ваются в 2.36 раза. 

Таблица 1. Характеристики исходной шелухи орехов и биоугля, полученного в кипящем слое шелухи 
орехов (без катализатора) методом влажной торрефикации 

Наименование показателя Исходный 
образец 

Биоуголь 
после WT 
при 200 °С 

Биоуголь 
после WT 
при 250 °С 

Биоуголь 
после WT 
при 300 °С 

Продолжительность процесса влажной торрефикации, с  – 2400 2200 2160 
Содержание влаги, % 7.09 3.79 3.39 3.02 
Зольность, % 0.71 1.12 1.33 1.43 
Содержание серы, % <0.01 <0.01 <0.01 <0.01 
Содержание углерода, %  48.6 52.5 52.7 57.6 
Содержание водорода, %  5.48 5.7 5.8 5.31 
Содержание азота, %  0.05 0.02 0.007 0.24 
Содержание кислорода, %  38.2 38.06 37.65 31.39 
Выход летучих, % 76.06 74.23 70.3 67.0 
Потеря массы образца, % – 8 8.4 18.5 
k – 0.000033 0.000039 0.00009 
Ea, кДж/моль 20.48 
А 0.01 
Средняя ошибка аппроксимации, %  0.7  
Низшая теплота сгорания, ккал/кг 4560 4900 4940 5330 
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Таблица 2. Характеристики исходной шелухи орехов и биоугля, полученного в кипящем слое 
с катализатором (20% оливинового песка и 80% шелухи орехов) 

Наименование показателя Исходный 
образец 

Биоуголь 
после ГТК 
при 200 °С 

Биоуголь 
после ГТК 
при 250 °С 

Биоуголь 
после ГТК 
при 300 °С 

Продолжительность процесса, с – 1850 1350 980 
Содержание влаги, % 7.09 3.87 3.0 2.57 
Зольность, % 0.71 1.01 1.2 1.57 
Содержание серы, % <0.01 <0.01 <0.01 <0.01 
Содержание углерода, % 48.6 52.2 54.1 57.1 
Содержание водорода, % 5.48 5.4 5.38 5.25 
Содержание азота, % 0.05 0.17 0.24 0.28 
Содержание кислорода, % 38.06 37.9 34.1 33.62 
Выход летучих, % 76.06 73.2 70.2 65.52 
Потеря массы образца, % – 7.4 11.3 17.5 
k  0.00004 0.00009 0.00019 
Ln k  -10.13 -9.32 -8.57 
Ea, кДж/моль – 32 
А  18.52 
Средняя ошибка аппроксимации, %  1.32 
Теплота сгорания в калориметрической бомбе, ккал/кг 4560 4810 5050 5210 

Таблица 3. Характеристики исходной шелухи орехов и биоугля, полученного в кипящем слое 
с катализатором (50% оливинового песка и 50% шелухи орехов) 

Наименование показателя Исходный 
образец 

Биоуголь 
после ГТК 
при 200 °С 

Биоуголь 
после ГТК 
при 250 °С 

Биоуголь 
после ГТК 
при 300 °С 

Продолжительность процесса влажной торрефикации, с – 1500 1150 659 
Содержание влаги, % 7.09 2.61 2.33 2.08 
Зольность, % 0.71 2.04 2.85 3.69 
Содержание серы, % <0.01 <0.01 <0.01 <0.01 
Содержание углерода, %  48.6 51.2 52.3 55.4 
Содержание водорода, %  5.48 5.65 5.45 5.39 
Содержание азота, %  0.05 0.31 0.33 0.35 
Содержание кислорода, %  38.06 38.18 35.6 33.08 
Выход летучих, % 76.06 74.33 70.2 66.57 
Потеря массы образца, %  – 5.3 7.6 14.0 
k  0.000036 0.00007 0.00022 
Ea, кДж/моль  50.0 
Теплота сгорания в калориметрической бомбе, ккал/кг 4560 4780 4960 5160 

При доле оливинового песка в кипящем слое в 50% при повышении температуры процесса влажной 
торрефикации с 200 до 300 °С влажность образца (от исходной) снижается на 70.1%, зольность возрастает 
в 5.2 раза, содержание углерода в образце увеличивается на 14.0%, содержание кислорода уменьшается на 
13.1%, а теплота сгорания образца биоугля возрастет на 132%. 

В присутствии в кипящем слое 50% катализатора увеличение температуры процесса влажной торре-
фикации с 200 до 300 °С приводит к сокращению необходимой продолжительности процесса на в 2.28 раза, 
при этом потери массы образца при торрефикации увеличиваются в 2.64 раза. 

Таким образом, применение катализатора и увеличение его доли в кипящем слое существенно сни-
жают необходимую продолжительность процесса влажной торрефикации и несколько увеличивают потери 
массы образца при торрефикации в сравнении с процессом, ведущимся без применения катализатора. 

Без применения катализатора энергия активации образца скорлупы фундука при влажной торрефи-
кации составляет 20.48 кДж/моль. Наличие в слое 20% катализатора увеличивает энергию активации до 
32 кДж/моль; при наличии в слое 50% частиц оливинового песка (по массе) энергия активации скорлупы 
фундука возрастает до 50 кДж/моль. 

В работе [21] была оценена энергия активации скорлупы фундука по результатам термогравиметри-
ческого анализа в воздухе и в среде двуокиси углерода. По данным авторов, энергия активации скорлупы 



ТОРРЕФИКАЦИЯ СКОРЛУПЫ ОРЕХА: КИНЕТИКА И СВОЙСТВА БИОУГЛЯ 339 

фундука составила 30.6–33.3 кДж/моль, что близко к результатам, полученным в нашем исследовании. При 
этом потери массы образца были 20–28%, что несколько выше, чем в нашем исследовании. 

В работе [22] энергия активации лигнина была оценена в 56.3 кДж/моль, энергия активации ксилана 
в 89.8 кДж/моль, целлюлозы – в 190.8 кДж/моль. Принимая во внимание этот факт, можно предположить, 
что при наличии в кипящем слое 50% катализатора и температуре влажной торрефикации 300 °С должна 
происходить значительная деструкция лигнина скорлупы фундука.  

Увеличение температуры процесса влажной торрефикации с 200 д 300 °С способствует увеличению 
теплоты сгорания получаемого биоугля 4.8–14.7% в сравнении с исходной скорлупой фундука. При этом 
максимальный рост теплоты сгорания биоугля наблюдается при температуре торрефикации 300 °С. Однако 
применение катализатора не оказывает существенного влияния на увеличение теплоты сгорания получае-
мого биоугля. 

Выводы 

1. Процесс влажной торрефикации в кипящем слое в среде перегретого водяного пара можно приме-
нять для термодеструкции скорлупы фундука. 

2. Применение катализатора (оливинового песка) позволяет несколько ускорить процесс влажной 
торрефикации, но практически не влияет на изменение химического состава получаемых биоуглей в срав-
нении с процессом без применения катализатора. 

3. Применение катализатора и увеличение его массовой доли в кипящим слое до 50% приводит к 
увеличению энергии активации скорлупы фундука в 2.5 раза в сравнении с энергией активации скорлупы 
фундука при ее торрефикации без применения катализатора.  

4. Энергия активации скорлупы фундука при температуре 300 °С в кипящем слое, содержащем 50% 
оливинового песка, близка к значениям энергии активации лигнина, что позволяет предположить значитель-
ную деструкцию лигнина при таких параметрах торрефикации, что делает гемицеллюлозные ксиланы до-
ступными для извлечения. 
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The process of wet torrefaction of hazelnut shells in a fluidized bed has been studied. It is shown that without the use of 

a catalyst, when the temperature of the torrefaction process changes from 200 to 300 ° C the humidity of the sample decreases 
by 70.7%, the ash content increases by 4.2 times, the carbon content increases by 18.5%, the oxygen content decreases by 11.7%, 
and the heat of combustion of the biochar sample increases by 16.9%. The use of olivine sand has no noticeable effect on the 
chemical composition of bio-coal in comparison with bio-coal obtained by wet torrefaction without the use of a catalyst. How-
ever, the use of a catalyst significantly reduce the required duration of the wet torrefaction process and slightly increase the mass 
loss of the sample during torrefaction. Without the use of a catalyst, the activation energy of a hazelnut shell sample during wet 
torrefaction is 20.48 kJ/mol. The presence of a 20% catalyst in the layer increases the activation energy to 32 kJ/mol; in the 
presence of 50% olivine sand particles in the layer (by weight) the activation energy of the hazelnut shell increases to 50 kJ/mol. 

Keywords: hazelnut shell, wet torrefaction, superheated steam, boiling layer, activation energy. 
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