
ХИМИЯ РАСТИТЕЛЬНОГО СЫРЬЯ. 2025. №3. С. 88–100. 
KHIMIYA RASTITEL'NOGO SYR'YA, 2025, no. 3, pp. 88–100. 
DOI: 10.14258/jcprm.20250315962 

 
 

Биополимеры растений 
 
 
УДК 54-16, 67.08 

ФРАКЦИОНИРОВАНИЕ ПРЕДОБРАБОТАННОЙ КИСЛОТОЙ 
И ЩЕЛОЧЬЮ ДРЕВЕСИНЫ БЕРЕЗЫ НА МЕТОКСИФЕНОЛЫ 
И ЦЕЛЛЮЛОЗУ С ИСПОЛЬЗОВАНИЕМ ЭТАНОЛА В КАЧЕСТВЕ 
ВОССТАНОВИТЕЛЯ И БИФУНКЦИОНАЛЬНОГО КАТАЛИЗАТОРА Ru/C 

© А.В. Мирошникова1,2*, А.С. Казаченко1,2, С.В. Барышников1, В.В. Сычев1,2, Ю.Н. Маляр1,2, 
А.М. Скрипников1,2, Ли Сяоминь2, А.И. Чудина1, О.П. Таран1,2, Б.Н. Кузнецов1,2 
1 Институт химии и химической технологии СО РАН, ФИЦ «Красноярский 
научный центр СО РАН», Академгородок, 50/24, Красноярск, 660036, 
Россия, miroshnikova35@gmail.com 
2 Сибирский федеральный университет, пр. Свободный, 79, Красноярск, 
660041, Россия 
 
Установлено влияние щелочной и кислотной предобработок на выход и состав продуктов термопревращения 

обработанной древесины березы в среде этанола при температуре 225 °С в присутствии бифункционального катализа-
тора, содержащего нанодисперсные частицы рутения на кислотном углеродном носителе Сибунит. Выходы жидких 
продуктов каталитического фракционирования древесины, подвергнутой щелочной и кислотной предобработкам, до-
стигают до 39 и 34 мас.% соответственно. В присутствии катализатора Ru/C наблюдается сдвиг кривых молекулярно-
массового распределения жидких продуктов в и повышение выхода мономерных метоксифенолов. Наиболее высокий 
выход мономерных метоксифенолов (18.2 мас.%) достигнут при термокаталитическом превращении древесины, под-
вергнутой кислотной предобработке. В этом случае также получен наиболее качественный целлюлозный продукт с со-
держанием целлюлозы 88.5 мас.% и индексом кристалличности 0.72. Предложена схема каталитического фракциони-
рования древесины березы на ксилан, ксилозу, мономерные метоксифенолы и микрокристаллическую целлюлозу с ис-
пользованием этанола в качестве восстановительного агента.  
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Введение 

Лигноцеллюлозная биомасса, в частности древесина, представляет собой сложный комплекс, состоя-
щий из основных структурных компонентов – полисахаридов целлюлозы и гемицеллюлоз и ароматического 
полимера лигнина [1], содержание которых варьируется в зависимости от вида и возраста растения [2].  

В отличие от целлюлозы гемицеллюлозы являются разветвленными некристаллическими гетеропо-
лимерами, состоящими из С5 и С6 моносахаридов и уроновых кислот. Различные типы гемицеллюлоз могут 
также широко варьироваться в зависимости от видов растений [3]. Наиболее распространенным типом ге-
мицеллюлозы лиственной древесины является ксилан [4]. 

Гемицеллюлозы и лигнин связаны между собой фенилгликозидными связями, образуя лигнин-угле-
водный комплекс, который формирует защитную оболочку вокруг волокон целлюлозы [5], что оказывает 
влияние на термохимические свойства древесной биомассы [6]. 

 
* Автор, с которым следует вести переписку. 
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Предварительные химические обработки древесины растворами щелочей и кислот способствуют раз-
рушению лигнин-углеводного комплекса и перехода в раствор гемицеллюлоз или продуктов их деполиме-
ризации – моносахаридов [7, 8]. Предварительная обработка разбавленной кислотой или щелочью позволяет 
не только эффективно удалить гемицеллюлозу, но и свести к минимуму повреждение лигнина и целлюлозы 
[9], при этом делая лигноцеллюлозный комплекс более доступным для дальнейшей переработки. 

Путем каталитической конверсии лигноцеллюлозной биомассы в среде алифатических спиртов в 
присутствии твердых бифункциональных катализаторов можно повысить выход низкомолекулярных про-
дуктов из лигнина и сохранить целлюлозный компонент биомассы [10–12]. В процессе термопревращения 
спирты выступают не только в роли растворителей, но и в качестве водородно-донорных агентов. Путем 
передачи водорода спирты стабилизируют активные промежуточные соединения, образующиеся при тер-
модеструкции лигнинов, предотвращая их реполимеризацию [13]. 

Известно, что многие органические соединения способны донировать водород и могут использо-
ваться в реакциях гидрирования вместо дорогостоящего водорода [14]. К их числу относится этанол, кото-
рый можно получать из целлюлозосодержащей биомассы. 

В результате ранее проведенного исследования по влиянию щелочной и кислотной предобработок дре-
весины березы на процесс ее гидрирования водородом в среде этанола в присутствии катализатора Ru/C уста-
новлено заметное влияние этих обработок на выход и состав жидких, твердых и газообразных продуктов [15]. 

В данной работе проведено сравнительное исследование влияния условий кислотной и щелочной об-
работок древесины березы на процесс безводородного фракционирования предобработанной древесины в 
среде этанола в присутствии бифункционального катализатора Ru/C. 

Экспериментальная часть 

Подготовка образцов древесины березы. В работе использовали древесину березы (Betula alba), со-
держащую (% в расчете на массу абсолютно сухой древесины): 47.3 – целлюлозы; 19.0 – лигнина; 28.5 – 
гемицеллюлоз; 4.9 – экстрактивных веществ; 0.3 – золы. Размер фракции древесины – менее 1 мм. Опреде-
ление химического состава древесных опилок проводили по стандартным методикам [16]. 

Приготовление и характеристика катализатора Ru/C. В процессе термопревращения древесины ис-
пользовали бифункциональный катализатор 3% Ru/C, ранее использованный в работе [15]. Катализатор го-
товили пропиткой кислотно-модифицированного углеродного носителя Сибунит (фракция 0.056–0.094 мм) 
водным раствором Ru(NO)(NO3)4.  

Для придания кислотных свойств углеродный носитель был окислен смесью О2 и N2 (20 : 80 об.%) в 
присутствии паров воды (насыщение – при 90 °С, давление паров – 70.1 кПа, скорость потока – 200 мл/мин) 
при 450 °C в течение 2 ч согласно методике [17]. После его пропитки Ru(NO)(NO3)4 и сушки полученный 
катализатор восстанавливали H2 при 300 °С. 

Характеристики полученного рутениевого катализатора: средний размер частиц рутения <dl> – 
1.13±0.01 нм; дисперсия рутения DRu – 0.94; удельная площадь поверхности (SBET) = 341 м2/г; объем пор 
(Vpore) = 0.50 см3/г; средний размер пор <dpore> 5.88 нм; рНpzc 6.89 [11]. 

Полученный бифункциональный рутениевый катализатор содержит как кислотные, так и металличе-
ские активные центры. 

Предварительные обработки древесины. Кислотную обработку древесины березы осуществляли 3% 
серной кислотой в ранее установленных оптимальных условиях: температура – 100 °С, продолжительность 
– 5 ч [18]. В этих условиях образуется ксилоза с выходом 77 мас.% от исходного содержания гемицеллюлоз 
в древесине березы. Содержание глюкозы и маннозы в полученном гидролизате является незначительной.  

Щелочную обработку древесины березы осуществляли 4% раствором гидроксида натрия при комнат-
ной температуре, гидромодуле 40 в течение 6 ч по методике, описанной в работе [15]. В этих условиях экс-
трагируется ксилан с выходом достигает 82 мас.% от исходного содержания гемицеллюлоз в древесине. 

Фракционирование предобработанной древесины березы. Эксперименты по фракционированию пре-
добработанной древесины березы осуществляли в автоклаве ChemRe SYStem R-201 (Корея) объемом 300 
мл. В реактор загружали 60 мл этанола, 3.0 г субстрата и 0.3 г катализатора. Реакцию проводили при посто-
янном перемешивании со скоростью 800 об./мин при температуре 225 °С в течение 4.5 ч аналогично [15]. 
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По окончании реакции смесь жидких и твердых продуктов разделяли фильтрованием. Газообразные про-
дукты собирали в газометр, измеряли их объем и устанавливали состав методом газовой хроматографии.  

Выход жидких и твердых продуктов определяли весовым методом [15]. 

Исследование продуктов фракционирования предобработанной древесины березы. Жидкие продукты 
фракционирования древесины березы анализировали методом хромато-масс-спектрометрии с использова-
нием, хроматографа Agilent 7890А, с капиллярной колонкой HP-5MS (30), при программировании темпера-
туры в интервале 40–250 °С. Хроматограф снабжен детектором селективных масс Agilent 7000A Triple Quad. 
Идентификацию соединений проводили с использованием базы данных прибора NIST MS Search 2.0. 

Молекулярно-массовое распределение жидких продуктов определяли с помощью метода гельпрони-
кающей хроматографии с использованием хроматографа Agilent 1260 Infinity II Multi-Detector GPC/SEC 
System с тройным детектированием: рефрактометром (RI), вискозиметром (VS) и светорассеянием (LS) ана-
логично [15]. 

Состав и концентрацию моносахаридов в растворе, полученном гидролизом гемицеллюлоз 4%-ной 
серной кислотой, определяли методом ГХ [16]. Содержание целлюлозы рассчитывали по разнице массы 
древесины (или твердого остатка) и содержания гемицеллюлоз и лигнина. 

Анализ методом газовой хроматографии проводили с использованием газового хроматографа VAR-
IAN-450 GC (Varian Inc., Пало-Альто, Калифорния, США), согласно методике, описанной в [15]. 

Элементный состав древесины и жидких продуктов определяли с помощью анализатора HCNS-O 
EAFLAS HTM 1112 (Thermo Quest).  

Анализ методом инфракрасной спектроскопии (ИК-спектроскопии) проводили в режиме пропуска-
ния. Образцы твердого продукта и исходной древесины (по 4 мг) готовили в таблетках с матрицей KBr. 
Спектры записаны на приборе Bruker Tensor-27 в диапазоне 4000–400 см-1. Спектральные данные обраба-
тывали с использованием программы OPUS/YR (версия 2.2). 

Рентгенофазовый анализ (РФА) проводили с использованием спектрометра PANalyticalX’Pert Pro 
(PANalytical, Нидерланды) с CuKα-излучением (λ = 0.54 нм). Анализ проводили в диапазоне углов 2θ = 5°–
70° с шагом 0.1° с порошком образца, помещенном в кювету диаметром 2.5 см. 

Индекс кристалличности (ИК) рассчитывали по соотношению высоты между интенсивностью кри-
сталлического пика (I002 – IAM) и общей интенсивностью (I002) после вычитания фонового сигнала [19] по 
формуле 

002

002

I
IIИК AM−

= , 

где I002 – высота пика 002; IAM – высота минимума между пиками 002 и 101. 

Результаты и обсуждение 

Фракционирование древесины березы в среде этанола. Результаты экспериментов по фракциониро-
ванию исходной и предварительно обработанной древесины березы в среде этанола при температуре 225 °С 
представлены в таблице 1.  

Предварительные щелочная и кислотная обработки, удаляющие гемицеллюлозы из древесины, соот-
ветственно, в виде ксилана и моносахаридов приводят к снижению выхода жидких продуктов и повышению 
выхода твердого продукта фракционирования. Повышенный выход газообразных продуктов при фракцио-
нировании необработанной древесины березы обусловлен протеканием реакции деструкции содержащихся 
в ней гемицеллюлоз при температуре 225 °С. Значительное снижение (до 0.8 мас.%) выхода газообразных 
продуктов при фракционировании обработанной древесины обусловлен удалением гемицеллюлоз при ще-
лочной и кислотных предобработках древесины.  

Методом гельпроникающей хроматографии установлено, что жидкие продукты некаталитического 
фракционирования исходной древесины березы имеют средневесовую молекулярную массу (Mw) 1513 Da, 
среднюю молекулярную массу (Mn) 705 Da и полидисперсность (PD) 2.146 (табл. 2).  

Предварительная щелочная обработка древесины березы снижает средневесовую молекулярную 
массу (Mw) до 1422 Da, среднюю молекулярную массу (Mn) до 686 Da и полидисперсность (PD) до 2.073 
жидких продуктов некаталитического фракционирования (табл. 2). Однако кислотная обработка увеличи-
вает среднемассовую молекулярную массу жидких продуктов (Mw) до 1884 Da, среднюю молекулярную 
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массу (Mn) до 838 Da и полидисперсность (PD) до 2.248. Такие изменения в молекулярной массе могут быть 
связаны с тем, что кислотная предобработка может приводить к частичной конденсации компонентов, тогда 
как более мягкая щелочная обработка способствует облегчению протекания деполимеризации. 

В присутствии катализатора Ru/C средняя молекулярная масса и полидисперсность жидких продук-
тов, получаемых из исходной древесины, существенно уменьшается (до 422 Da и 1.526 соответственно) 
(табл. 2). 

В жидких продуктах каталитического фракционирования обработанной кислотой древесины наблю-
дается снижение Mw до 868 Da, Mn до 500 Da и PD до 1.736 по сравнению с некаталитическим процессом 
(табл. 2).  

На кривых молекулярно-массового распределения жидких продуктов некаталитического фракциони-
рования исходной и предобработанной древесины наблюдается пик, соответствующий олигомерам с Mw 
около 600 Da и около 1500 Da (рис. 1). Наличие пиков в области около 280 Da указывает на присутствие 
мономерных фенольных соединений (рис. 1а).  

Для жидких продуктов каталитического фракционирования древесины наблюдается сдвиг кривых 
молекулярно-массового распределения в низкомолекулярную область по сравнению с продуктами неката-
литического фракционирования. 

Повышение интенсивности пиков, соответствующие молекулярным массам ~280 Dа и ~600 Da на 
кривой ММР жидких продуктов каталитического фракционирования исходной древесины, указывает на де-
струкцию в присутствии катализатора части олигомеров лигнина до димерных и мономерных соединений 
(рис. 1а). 

На кривой ММР жидких продуктов каталитического фракционирования древесины, подвергнутой 
щелочной предобработке, наблюдается интенсивный пик в области ~285 Da, соответствующий фенольным 
мономерным соединениям (рис. 1б). На кривой ММР жидких продуктов, каталитического фракционирова-
ния древесины, обработанной кислотой, присутствует пик, соответствующий мономерам с молекулярной 
массой ~263 г/моль, при этом существенно более высокая интенсивность пика 600 Da указывает на повы-
шенное содержание олигомерных соединений по сравнению с мономерными (рис. 1в).  

Результаты элементного анализа состава образцов исходной древесины березы и жидких продуктов 
ее фракционирования приведены в таблице 3.  

Жидкие продукты фракционирования исходной и предобработанной древесины березы содержат 
меньше кислорода и больше водорода по сравнению с полученными из исходной древесины. В жидких про-
дуктах каталитического фракционирования древесины содержание кислорода ниже, а водорода – выше по 
сравнению с продуктами некаталитического процесса, что указывает на протекание реакций гидродеокси-
генации в присутствии катализатора. 

Таблица 1. Выход продуктов фракционирования древесины березы в среде этанола при 225 °С.  
a – исходная древесина, b – после щелочной обработки, с – после кислотной обработки  

Способ  
фракционирования 

Выход продуктов, мас.% 
Жидких Твердых Газообразных 

без/кта* 42.0 45.2 6.8 
без/ктb** 37.9 52.5 1.4 
без/ктc** 32.0 66.7 0.8 
Ru/Cа* 44.5 38.0 10.0 
Ru/Cb** 39.0 48.5 5.6 
Ru/Cc** 34.0 58.0 1.9 

*от массы абс. сух. исходной древесины; ** от массы абс. сух. обработанной древесины. 

Таблица 2. Молекулярно-массовые характеристики жидких продуктов фракционирования древесины 
березы (225 °С, 4.5 ч), a – исходная древесина березы, b – после щелочной обработки, с – после 
кислотной обработки 

Способ фракционирования Mn(Da) Mw(Da) PD 
без/кта 705 1513 2.146 
без/ктb 686 1422 2.073 
без/ктc 838 1884 2.248 
Ru/Cа 422 644 1.526 
Ru/Cb 387 627 1.620 
Ru/Cc 500 868 1.736 
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Рис. 1. Кривые молекулярно-массового 
распределения (ММР) жидких продуктов 
фракционирования древесины березы:  
а – исходной, б – после щелочной обработки,  
в – после кислотной обработки в 

Таблица 3. Элементный состав образцов исходной древесины березы и жидких продуктов ее 
фракционирования при 225 °С; a – исходная древесина березы, b – после кислотной обработки, 
с – после щелочной обработки 

Образец С, мас.% Н, мас.% О, мас.% 
Древесина 49.9 6.1 43.9 
Жидкие продукты:  

без/кт(a) 58.8 7.5 33.7 
без/кт(b) 60.6 7.2 32.4 
без/кт (c) 59.5 7.0 33.3 
Ru/C(a) 60.3 8.1 31.6 
Ru/C(b) 61.8 7.7 30.6 
Ru/C(c) 62.0 7.8 30.2 

Состав жидких продуктов фракционирования древесины березы. По данным метода ГХ-МС, жидкие 
продукты фракционирования древесины березы содержат мономерные метоксифенолы, среди которых пре-
обладают алкилпроизводные сирингола (S1) и в меньшей степени – гваякола (G1) (рис. 2). 

Предварительная кислотная или щелочная обработка древесины позволяет удалить гемицеллюлозы 
из древесины, что повышает реакционную способность лигнина в процессе восстановительной деполиме-
ризации [9, 20]. 

Предварительные щелочная и кислотная обработки древесины березы значительно повышают вы-
ходы мономерных метоксифенолов из лигнина в процессе ее фракционирования в среде этанола. Наиболее 
заметное увеличение их выхода (с 1.5 до 5.0 мас.%) наблюдалось в процессе фракционирования древесины, 
подвергнутой щелочной обработке. 

Согласно литературным данным, лигнин, ковалентно связанный с арабиноксиланом, отличается по-
вышенным содержанием реакционноспособных β-O-4 связей [21], а древесина березы имеет высокое содер-
жание арабиноксилана. Причем предварительное удаление ксилана при щелочной обработке древесины об-
легчает деполимеризацию связанного с ним лигнина [22].  
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Рис. 2. Содержание метоксифенолов в жидких продуктах фракционирования древесины березы 
(225 °С, 4.5 ч): a – исходная древесина, b – после щелочной обработки, с – после кислотной обработки 

Снижение выхода фенольных мономеров при фракционировании древесины, предобработанной кисло-
той, может быть обусловлено уменьшением содержания реакционноспособных связей β-O-4 в лигнине в про-
цессе кислотной обработки древесины при температуре 100 °С. Более высокий выход фенольных мономеров 
при фракционировании древесины, обработанной щелочью при 25 °С, вероятно, обусловлен сохранением 
большинства исходных β-O-4 связей после щелочной обработки [22], что подтверждается данными ГПХ. 

Рутениевый катализатор способствует существенному увеличению суммарного выхода мономерных 
фенолов при фракционировании как исходной (в 10 раз), так и предобработанной древесины березы (в 3.5–
6 раз). Наиболее высокий выход метоксифенолов (18.2 мас.%) наблюдается при каталитическом фракцио-
нировании древесины, предобработанной щелочью. Ранее нами было показано, что в присутствии молеку-
лярного водорода при аналогичных условиях процесса каталитического фракционирования древесины бе-
резы, предобработанной щелочью, выход фенольных мономеров достигает 24.87 мас.% [15]. Кроме того, 
катализатор может увеличивать выход насыщенных алкилзамещенных метоксифенолов, таких как 4-про-
пилсирингол (S4) и 4-пропилгваякол (G2) в результате гидрирования соответсвующих пропенилзамещен-
ных метоксифенолов: 4-пропенилгваякола (G1) и 4-пропенилсирингола (S3) водородом, донируемым рас-
творителем этанолом [23]. Известно, что низшие алифатические спирты являются донорами водорода, что 
позволяет в их присутствии осуществлять каталитический гидрогенолиз и гидрирование ароматических 
фрагментов макромолекул лигнина [23, 24]. 

Следует отметить, что при каталитическом фракционировании исходной и обработанной щелочью 
древесины выход алкилзамещенных метоксифенолов составляет 8.34 и 8.75 мас.% соответственно и снижа-
ется до 5.18 мас.% для древесины, предобработанной кислотой.  

Образование 4-пропанолсирингола (S5) в количестве 1.36 мас.% наблюдается только при фракцио-
нировании в отсутствии H2 древесины березы, подвергнутой щелочной предобработке. При использовании 
молекулярного водорода в качестве восстановителя достигался более высокий выход 4-пропанолсирингола 
(9.71 мас.%), и 4-пропилсирингола (8.64 мас.%) [15]. В составе жидких продуктов, полученных фракциони-
рованием древесины ели в присутствии катализатора Ru/C преобладал 4-пропилгваякол (до 25 мас.%) [25]. 
При использовании никельсодержащего катализатора NiCuMo/SiO2 в процессе фракционирования древе-
сины пихты в присутствии H2 преобладающим мономером в составе жидких продуктов являлся 4-пропа-
нолгваякол (16 мас.%) [26].  

Полученные результаты подтверждают литературные данные о том, что в процессах фракциониро-
вания лигноцеллюлозной биомассы рутений-содержащие катализаторы способствуют образованию пре-
имущественно пропил-замещенных фенольных соединений [27], а Ni-содержащие катализаторы – образо-
ванию пропанолзамещенных метоксифенолов [28].  
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Жидкие продукты, образующиеся из древесных полисахаридов, представлены производными фу-
рана, эфирами, спиртами и др. Жидкие продукты каталитического фракционирования исходной древесины 
березы содержит больше производных фурана по сравнению с некаталитическим процессом. Однако эти 
соединения практически отсутствуют в жидких продуктах каталитического фракционирования древесины, 
подвергнутой щелочной и кислотной предобработке, вероятно, они в основном образуются в результате 
конверсии гемицеллюлоз. Содержание эфиров, спиртов и кетонов в жидких продуктах каталитического 
фракционирования исходной и предобработанной щелочью древесины составляет 1.3 и 1.8 мас.% и не пре-
вышает 0.6 мас.% для древесины, предобработанной кислотой. 

Состав и строение целлюлозных продуктов фракционирования древесины березы. В процессах нека-
талитического и каталитического фракционирования древесины березы наблюдается возрастание выхода 
твердого продукта при использовании щелочной и кислотной предобработок (табл. 1). При этом выход твер-
дых продуктов, образующихся при фракционировании исходной и предобработанной древесины в присут-
ствии катализатора Ru/C, ниже, чем в некаталитическом процессе. 

Результаты химического анализа твердых продуктов на содержание целлюлозы, гемицеллюлоз и лиг-
нина указывают на преобладание целлюлозы в их составе (табл. 4) 

Общей тенденцией является снижение содержания гемицеллюлоз и лигнина при одновременном уве-
личении содержания целлюлозы в твердых продуктах, полученных фракционированием древесины, под-
вергнутой щелочной и кислотной предобработкам. В твердых продуктах некаталитического фракциониро-
вания наиболее высокое содержание целлюлозы (80.6 мас.%) при использовании древесины, предобрабо-
танной кислотой (табл. 4). Катализатор Ru/C повышает содержание целлюлозы в твердых продуктах фрак-
ционирования исходной и предобработанной древесины. Наиболее высоким содержанием целлюлозы 
(88.5 мас.%) и низким содержанием лигнина (6.0 мас.%) и гемицеллюлоз (3.1 мас.%) отличается твердый 
продукт, полученный каталитическим фракционированием древесины, предобработанной кислотой. 

Этот целлюлозный продукт был охарактеризован методами ИКС и РФА. 
По результатам ИК-спектроскопии образец исходной древесины березы состоит из набора полос по-

глощения, характерных для ее основных компонентов, а также полос, относящихся к связям между макро-
молекулами целлюлозы, лигнина и гемицеллюлоз [29]. На содержание ксилана в древесине указывает при-
сутствие полосы поглощения при 1734 см-1, соответствующий валентным колебаниям группы С=О в слож-
ноэфирной группе уроновых кислот гемицеллюлоз [30]. В твердом продукте процесса некаталитического 
фракционирования исходной древесины интенсивность п.п. при 1734 см-1 значительно снижается, а в твер-
дых продуктах каталитического фракционирования как исходной, так и предварительно обработанной дре-
весины эти полосы почти полностью исчезают. Полосы поглощения при 1593, 1505 см-1 соответствуют ва-
лентным колебаниям С-С связи сирингильных и гваяцильных колец лигнина [30]. Уменьшение интенсив-
ности всех п.п. в твердых продуктах фракционирования древесины свидетельствует об уменьшении содер-
жания в них ароматических и сложноэфирных групп вследствие удаления ксилана и лигнина.  

Полосы поглощения в области 1500–900 см-1 соответствуют колебаниям различных связей: С-Н – в 
метильных и метиленовых группах, С-О- и О-Н – колебаниям гликозидной связи и глюкопиранозного 
кольца целлюлозы [31]. По сравнению с исходной древесиной березы в ИК-спектрах твердых продуктов ее 
фракционирования наблюдается увеличение интенсивности п.п. при 1455 и 1421 см-1, соответствующих цел-
люлозе. Наиболее существенно увеличивается интенсивность полосы при 1421 см-1, характеризующей кри-
сталличность целлюлозы.  

Таблица 4. Химический состав твердых продуктов некаталитического и каталитического 
фракционирования древесины: a – исходная древесина березы, b – после щелочной обработки, 
с – после кислотной обработки 

Способ  
фракционирования 

Состав твердого продукта, мас.% 
Целлюлоза Гемицеллюлозы Лигнин 

б/ктa 69.7 12.5 17.8 
б/ктb 76.8 7.6 15.6 
б/ктc 80.6 5.4 14.0 
Ru/Ca  79.3 9.6 11.1 
Ru/Cb  87.4 5.5 9.5 
Ru/Cc 88.5 3.1 6.0 
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Образцы исходной и предобработанной древесины и целлюлозных продуктов ее фракционирования 
исследованы методом РФА. Из полученных дифрактограмм были посчитаны значения индекса кристаллич-
ности (ИК) образцов древесины и твердых продуктов (табл. 5). Кислотная обработка древесины удаляет 
легкогидролизуемые полисахариды и повышает индекс ее кристалличности с 0.59 до 0.69.  

Индекс кристалличности образца древесины, обработанной щелочью, снижается до 0.51. Целлюлоз-
ные продукты каталитического фракционирования исходной и предобработанной древесины характеризу-
ются более высокими индексами кристалличности по сравнению с целлюлозными продуктами некаталити-
ческого процесса (табл. 5). Наиболее высоким индексом кристалличности (0.72) отличается целлюлозный 
продукт, полученный при каталитическом фракционировании древесины, обработанной кислотой. По сво-
ему составу и индексу кристалличности этот образец соответствует коммерческой микрокристаллической 
целлюлозе с ИК 0.75 [32]. 

Состав газообразных продуктов фракционирования древесины березы. Газообразные продукты 
некаталитического фракционирования исходной древесины березы в основном представлены CO (58 мас.%) 
и CO2 (43 мас.%). При некаталитическом фракционировании предобработанной древесины содержание CO2 
возрастает вдвое при одновременном уменьшении содержания CO более чем в 3 раза.  

При каталитическом фракционировании древесины также образуется СН4 (9 мас.%). Доля метана в 
составе газообразных продуктов фракционирования предобработанных образцов древесины в 3 раза выше 
по сравнению с исходной древесиной.  

Увеличение выхода СО, вероятно, обусловлено интенсификацией в присутствии катализатора реак-
ции кислотнокатализируемого гидролиза сложноэфирных связей между фрагментами лигнина с образова-
нием кетонов Хибберта, которые затем декарбонилируются на металлических центрах катализатора с обра-
зованием СО [33]. Увеличение выхода метана вероятно связано с реакцией каталитического крекинга ме-
токсифенолов, образующихся при деполимеризации лигнина [34]. 

Таблица 5. Индексы кристалличности образцов древесины березы и полученных целлюлозных продуктов 
(a – исходная древесина, b – после щелочной обработки, с – после кислотной обработки) 

Образец Индекс кристалличности твердого про-
дукта 

Древесина березы а 0.59 
Древесина березы b 0.51 
Древесина березы с 0.69 
Целлюлозный продукт а 0.61 
Целлюлозный продукт b 0.52 
Целлюлозный й продукт с 0.70 
Целлюлозный продукт Ru/Ca 0.68 
Целлюлозный продукт Ru/Cb 0.57 
Целлюлозный продукт Ru/Cс 0.72 
Коммерческий МКЦ [32] 0.75 

Заключение 

Результаты проведенного исследования показали, что интеграция процессов удаления гемицеллюлоз 
в виде ксилозы при кислотной обработке древесины березы и в виде ксилана при ее щелочной обработке и 
последующего фракционирования, не содержащей гемицеллюлоз древесины в среде водородно-донорного 
растворителя этанола при 225 °С, позволяет получать ряд востребованных продуктов: ксилан, ксилозу, мик-
рокристаллическую целлюлозу и мономерные метоксифенолы (рис. 3). 

Наиболее качественная целлюлоза, соответствующая по своему составу и строению микрокристал-
лической целлюлозе (содержание целлюлозы 88.6 мас.%, индекс кристалличности 0.72), получена при ка-
талитическом фракционировании древесины березы, предобработанной кислотой. 

Как было показано нами ранее [15], дополнительное использование молекулярного водорода в про-
цессе фракционирования предобработанной щелочью и кислотой древесины березы в среде этанола в при-
сутствии катализатора Ru/C при 225 °С повышает выход целевых продуктов: мономерных метоксифенолов 
– с 18.2 до 24.5 мас.%, целлюлозы в целлюлозном продукте – с 88.5 до 95.0 мас.% и индекс кристалличности 
целлюлозы – с 0.72 до 0.74 [15]. 

Продукты экстракционно-каталитического фракционирования древесины березы востребованы в хи-
мической, пищевой, медицинской и других областях промышленности. 
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Рис. 3. Схема каталитического фракционирования древесины березы на востребованные химические 
продукты 
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birch wood in an ethanol medium at a temperature of 225 °C in the presence of a bifunctional catalyst containing nanodispersed 
ruthenium particles on the acidic carbon support Sibunit has been established. The yields of liquid products of catalytic fraction-
ation of wood subjected to alkaline and acid pretreatments reach 39 and 34 wt.%, respectively. In the presence of the Ru/C 
catalyst, a shift in the molecular weight distribution curves of the liquid products and an increase in the yield of monomeric 
methoxyphenols are observed. The highest yield of monomeric methoxyphenols (18.2 wt.%) was achieved during thermal cata-
lytic transformation of wood subjected to acid pretreatment. In this case, the highest quality cellulose product was also obtained 
with a cellulose content of 88.5 wt.% and a crystallinity index of 0.72. A scheme for catalytic fractionation of birch wood into 
xylan, xylose, monomeric methoxyphenols and microcrystalline cellulose using ethanol as a reducing agent is proposed. 
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