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Аннотация

В работе представлен набор задач творческого характера для факультативного
практикума со студентами младших курсов, решение которых направлено на разви-
тие аналитических качеств и способствующих самостоятельному продвижению как в
подготовке к студенческим математическим соревнованиям, так и в исследователь-
ской работе.
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Регулярная факультативная работа по подготовке к тем или иным математическим
соревнованиям, а также к научно-исследовательской работе даёт возможность выработ-
ки у учащихся логического и последовательного мышления. Геометрические рассужде-
ния по определённым правилам позволяют последовательно объединять в себе несколько
соображений-идей, а последовательное увеличение количества условий и требований к
рассматриваемым объектам даёт возможность успешного продвижения в исследованиях
к итоговому результату [1–5].

Представим здесь ряд задач для факультативного практикума по указанной в названии
теме, призванных к подготовке к использованию представленных подходов в исследова-
тельской работе над практическими задачами.

1. На столе лежат одинаковые (круги) монеты без наложений друг на друга. Какое
минимальное количество цветов необходимо для раскраски монет так, что каждая монета
была окрашена в один цвет, а касающиеся друг друга монеты были окрашены в разные
цвета? [6, с. 29].

Ответ. 4 цвета.
Пусть имеется некоторое расположение монет на столе. Будем считать, что монеты еди-

ничного диаметра. Отметим центры монет на столе. Если монеты касаются друг друга, то
соединим отрезком центры этих монет. Таким образом, произвольному расположению мо-
нет соответствует однозначно определённый граф, у которого попарные расстояния между
вершинами не меньше 1 и вершины смежные тогда и только тогда, когда расстояние равно
1.

Обратно. Пусть на плоскости граф, у которого попарные расстояния между вершинами
не меньше 1 и вершины смежные тогда и только тогда, когда расстояние равно 1. Тогда
такому графу соответствует некоторое расположение монет на столе.

Итак. Задача сводится к правильной раскраске вершин графа с указанными выше
свойствами.

На рисунке 1 приведён пример графа, для правильной раскраски вершин которого трёх
цветов недостаточно. Во-первых, достаточно очевидно, что данный граф соответствует
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Рисунок 1. Пример графа

условию задачи (здесь все отрезки имеют единичную длину). Во-вторых, при правиль-
ной раскраске этого графа в три цвета необходимо вершины, не соединённые диагональю,
у каждого ромба должны быть одноцветными. Получаем противоречие на отрезке вни-
зу рисунка. Следовательно, для правильной раскраски этого графа необходимо не менее
четырёх цветов.

Оценка. Покажем, что для правильной раскраски любого графа, соответствует усло-
вию задачи, достаточно четырёх цветов.

Индукция по числу вершин. База индукции очевидна.
Предположим, что любой граф, имеющий n вершин и удовлетворяющий условию за-

дачи, можно окрасить в четыре цвета.
Рассмотрим граф, имеющий n + 1 вершину удовлетворяющий условию задачи. По-

строим выпуклую оболочку вершин этого графа. Вершина выпуклого многоугольника
является вершиной исходного графа, при этом её степень не больше 3. Удалим эту вер-
шину графа (вместе с рёбрами). Останется граф, имеющий n вершин и удовлетворяющий
условию задачи, который по предположению можно окрасить в четыре цвета. Возвращаем
удалённую ранее вершину. Поскольку её степень не выше 3, то её можно покрасить в цвет,
отличный от смежных с нею вершин.

2. Шестиугольник M0 разрезан на выпуклые многоугольники M1,M2, . . . ,Mn,
число сторон которых равно m1,m2, . . . ,mn соответственно. Докажите неравенство:
m1+m2+...+mn

n
≤ 6.

Рассмотрим граф, вершинами которого будут вершины многоугольников
M0,M1,M2, . . . ,Mn. Две вершины называем смежными, если они – соседние верши-
ны многоугольников M1,M2, . . . ,Mn.

Обозначим: a1, a2, a3, a4, a5, a6 – вершины многоугольника M0; a7, . . . , ak – остальные
вершины; m (ai) – количество сторон многоугольников Mj, j = 1, 2, . . . , n, у которых ai
является вершиной одной из его сторон (концом его стороны).

Тогда 1) m (a1) + . . .+m (ak) = 2 (m1 + . . .+mk);
2) m (ai) = 2 deg ai − 2, где i = 1, 2, . . . , 6, deg – степень вершины;
3) если вершина ai лежит внутри одной из сторон многоугольниковM0,M1,M2, . . . ,Mn,

то m (ai) = 2 deg ai − 2 ≤ 2 deg ai. (при этом таких сторон – ровно одна);
4) если вершина ai не лежит внутри ни одной из сторон многоугольников

M0,M1,M2, . . . ,Mn, то m (ai) = 2 deg ai.
Таким образом, получаем:

m (a1) + . . .+m (ak) = (2 deg a1 − 2) + . . .+ (2 deg a6 − 2) +m (a7) + . . .+m (ak) ≤
≤ 2 (deg a1 + . . .+ deg ak)− 12 = 4P − 12,

здесь P – количество рёбер графа. Итого m1 + . . .+mk ≤ 2P − 6.
Далее, deg ai ≥ 2, если i = 1, 2, . . . , 6 и deg ai ≥ 3, если i = 7, . . . , k. Значит, 2P ≥

12 + 3 (B − 6) = 3B − 6, здесь B – количество вершин графа. Кроме того, количество
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граней есть Ã = n+ 1. Теперь применяем теорему Эйлера для планарных графов

P = B + Ã− 2 ≤ 2P + 6

3
+ n+ 1− 2 =

2P

3
+ n+ 1

и получаем: P
3
≤ n+ 1, 2P ≤ 6n+ 6. Итого m1 + . . .+mk ≤ 2P − 6 ≤ 6n.

3. На столе лежат карточки с номерами 1, 2, . . . , n. На невидимой стороне каждой
карточки написано по одному числу. Разрешается выбрать любую группу карточек (в том
числе одну карточку) и узнать сумму чисел на выбранных карточках.

За какое минимальное количество вопросов можно узнать на какой карточке написано
какое число?

Ответ: за n вопросов.
Решение. Если задавать вопросы по каждой карточке в отдельности, то за n вопросов

получим требуемый ответ.
Предположим, что задано k вопросов, где k < n, и получены ответы S1, S2, . . . , Sk.

Сопоставим ответу Si (1 ≤ i ≤ k) упорядоченный набор (ai1, ai2, . . . , ain), где aij = 1, если
j-тая карточка попала в группу i-того вопроса и aij = 0, если не попала. Отметим, что
система линейных уравнений

a11x1 + a12x2 + . . .+ a1nxn = S1

a21x1 + a22x2 + . . .+ a2nxn = S2

. . . . . . . . . . . . . . . . . . . . . . . .

ak1x1 + ak2x2 + . . .+ aknxn = Sk

(1)

имеет, по крайней мере, одно решение, соответствующее числам, написанным на обороте
карточек. Пусть это (x01, x

0
2, . . . , x

0
n). Из системы (1) составим систему

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

. . . . . . . . . . . . . . . . . . . . . . . .

ak1x1 + ak2x2 + . . .+ aknxn = 0

(2)

Очевидно, что x1 = 0, x2 = 0, . . . , xn = 0 решение этой системы.
Докажем индукцией по n, что система (2) имеет и ненулевые решения. Для n = 2

система (2) состоит из одного уравнения a11x1 + a12x2 = 0, пусть a11 6= 0, тогда
(−a12, a11) ненулевое решение. В индукционном шаге выражаем переменную, при кото-
рой ненулевой коэффициент через остальные в одном из уравнений и подставляем в
остальные уравнения. Итак, пусть (x11, x

1
2, . . . , x

1
n) ненулевое решение системы (2). Тогда

(x01 + x11, x
0
2 + x12, . . . , x

0
n + x1n) решение системы (1), отличное от (x01, x

0
2, . . . , x

0
n). Это озна-

чает, что на обороте карточек могут быть написаны два разных набора чисел, по которым
получены одинаковые ответы.

4. На конференции четыре официальных языка. Любые два участника могут общать-
ся между собой на одном из них. Докажите, что одним из языков владеет не менее 3

5

участников.
Задачу достаточно решить для случая, когда каждый участник владеет не менее, чем

двумя языками. Действительно, если один из участников владеет только одним языком,
тогда этим языки владеют все участники и задача решена.

Считаем далее, что каждый из участников владеет не менее чем двумя языками. Отме-
тим, что в этом случае тот, кто знает три языка, может общаться с каждым из участников
конференции. Поэтому, если кто-либо говорит на четырёх языках, то он может отказать-
ся владеть одним из языков. Таким образом, можно считать, что каждый из участников
владеет не более, чем тремя языками.
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Допустим теперь, что есть участник конференции, говорящий на трех языках, при
этом он в общении с остальными участниками конференции может обойтись двумя язы-
ками. В этом случае будем считать, что он владеет двумя языками. Будем повторять эту
процедуру с другими трехъязычными участниками конференции до тех пор, пока либо
их не останется, либо не окажется, что трехъязычные участники конференции не могут
обойтись двумя языками.

Рассмотрим случай, когда каждый из участников владеет ровно двумя языками. Пусть
1, 2, 3, 4 – языки конференции. Допустим, что один из официальных языков не знает
никто. Пусть это язык 4, тогда имеется три группы участников конференции, которые
владеют языками 1 и 2 (n человек), 2 и 3 (m человек), 1 и 3 (k человек). Всего участников
конференции N = n + m + k, язык 1 знают n + k человек, язык 2 знают n + m человек,
язык 3 знают m + k человек. Если при этом каждым языком менее 2

3
N , то, складывая

неравенства n + k < 2
3
N , n + m < 2

3
N , k + m < 2

3
N , получим противоречие 2N < 2N(

2
3
> 3

5

)
и задача в рассматриваемом случае решена. Если же в общении используются

все четыре языка, то один из языков должны знать все. Действительно, пусть участник
A владеет языками 1 и 2, участник B владеет языком 3, тогда его второй язык 1 или 2.
Можно считать, что это 1. Допустим, что участник C, владеет языком 4, тогда второй его
язык это 1 и все знают язык 1.

Рассмотрим случай, когда в результате описанной выше процедуры остался трехъ-
язычный участник A. Пусть он владеет языками 1, 2, 3. Если предположить, что среди
участников конференции есть тот, кто владеет только языками 1 и 2, то, поскольку он
может общаться со всеми участниками конференции, участник A тоже может обойтись
языками 1 и 2. Но поскольку он остался в результате описанной выше процедуры, предпо-
ложение не верно. Значит, каждый из участников, который владеет ровно двумя языками,
относится к одной из трёх групп владеющих языками 1 и 4 (n человек), 2 и 4 (m человек),
3 и 4 (k человек). Из доказанного выше вытекает, что все оставшиеся трехъязычные участ-
ники владеют языками 1, 2, 3 (l человек). Всего участников конференции N = n+m+k+l,
язык 1 знают n+ l человек, язык 2 знают m+ l человек, язык 3 знают k+ l человек, язык 4
знают n+m+k человек. Если при этом каждым языком менее 3

5
участников то, n+l < 3

5
N ,

m+ l < 3
5
N , k+ l < 3

5
N , n+m+ k < 3

5
N . Сложим эти неравенства, умножив последнее из

них на 2, получим противоречие 3N < 3N .
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