Genetic mechanisms of progressive evolution and speciation in plants: Gene multiplication as a way of an adequate response of the genome to the action of environmental factors
УДК 575.852
Abstract
One of the mechanisms related to the progressive evolution of plants probably is gene duplications. Paralogous and orthologous gene copies can appear in the genome either as a result of whole genome duplication (WGD), or after segmental or tandem duplications. The proportion of duplicated genes among the protein-coding genes in plant genomes is high (64 % on average), but it is several times less than would be expected if all genes duplicated during WGD were preserved - all plant genomes in that or otherwise lost some of the duplicated genes and transposons. Due to the need to respect the gene dose, for duplicated genes resulting from WGD, the rule applies: genes whose products work as part of multiprotein complexes are preserved, genes following the rule “one gene - one enzyme” prefer a monogenic existence. On the contrary, if duplicated copies of genes appeared in the genome as a result of tandem or segmental duplication, then in the first place, for the same reason, “extra” copies of the genes of the components of heteromeric complexes are lost. The role of tandem duplications in plant evolution, apparently, consists primarily in the fact that they correct the results of the distribution of alleles that remains in the genome of a polyploid or diploid as a result of processes of secondary diploidization and fractionation of neopolyploid genomes, stochastic changes in the set of alleles in comparison with stabilized (passed a long selection).
Downloads
Metrics
References
Оно С. Генетические механизмы прогрессивной эволюции. - М.: Мир, 1973. - 227 с.
Раутиан А. С. Букет законов эволюции // Эволюция биосферы и биоразнообразия. К 70-летию А. Ю. Розанова. - М.: Т-во научных изданий КМК, 2006. - С. 20-38.
Родионов А. В. Тандемные дупликации генов, эуполиплоидия и вторичная диплоидизация-генетические механизмы видообразования и прогрессивной эволюции в мире растений // Turczaninowia, 2022. - Т. 25, № 4. -С. 87-121. DOI: 10.14258/turczaninowia.25.4.12
Родионов А. В. Эуплоидия как способ видообразования у растений // Генетика, 1923. - Т. 59, №5. - С. 493-506.
Северцов А. Н. Морфологические закономерности эволюции. - М.-Л.: Изд-во АН, 1939. - 610 с.
Серебровский А. С. Гены scute и achaete у Drosophila melanogaster и гипотеза их дивергенции // Докл. АН СССР, 1938. - Т. 19. - С. 77-81.
Серебровский А. С. Некоторые проблемы органической эволюции. - М.: Наука, 1973. - 168 с.
Толмачев А. И. О приложении учения А. Н. Северцова об ароморфозе к исследованию филогении растений // Бот. журн., 1951. - Т. 36, № 3. - С. 225-230.
Филипченко Ю. А. Изменчивость и методы ее изучения. Издание 4-е. - М., Л.: Государственное изд-во, 1929. - 275 с.
Abbott R. J., Lowe A. J. Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles // Biol. J. Linn. Soc., 2004. - Vol. 82. - P. 467-474.
Ainouche M. L., Baumel A., Salmon A. Spartina anglica C. E. Hubbard: a natural model system for studying early evolutionary changes that affect allopolyploid genomes // Biol. J. Linn. Soc., 2004. - Vol. 82. - P. 475-484.
Cheng S., Xian W., Fu Y., Marin B., Keller J., Wu T., Sun W., Li X., Xu Y., Zhang Y., Wittek S. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution // Cell, 2019. - Vol. 179. - P. 1057-1067.
Dobzhansky T. Genetics of the Evolutionary Process. - N.Y., London: Columbia Uneversity Press, 1970. - 505 p.
FreelingM. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition // Annu. Rev. Plant. Biol., 2009. - Vol. 60. - P. 433-453.
Gao B., Wang L., Oliver M., Chen M., Zhang J. Phylogenomic synteny network analyses reveal ancestral transpositions of auxin response factor genes in plants // Plant Methods, 2020. - Vol. 16. - P. 1-13.
Karpechenko G. D. Polyploid hybrids of Raphanus sativus L. x Brassica oleracea L.: (On the problem of experimental species formation) // Zeitschrift fur induktive Abstammungs-und Vererbungslehre, 1928. - Vol. 48, № 1. - S. 1-85.
Koo D. H., Molin W. T., Saski C. A., Jiang J., Putta K., Jugulam M., Friebe B., Gill B. S. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri // Proc. Natl Acad. Sci., 2018. - Vol. 115. - P. 3332-3337. DOI: 10.1073/pnas.1719354115
Koonin E. V. Orthologs, paralogs, and evolutionary genomics // Annu. Rev. Genet., 2005. - Vol. 39. - P. 309-338.
Liang Z., Schnable J. C. Functional divergence between subgenomes and gene pairs after whole genome duplications // Molecular Plant, 2018. - Vol. 11. - P. 388-397.
Lopes I., Altab G., Raina P., De Magalhaes J. P. Gene size matters: an analysis of gene length in the human genome // Front. Genet., 2021. - Vol. 12. - P. 559998. DOI: 10.3389/fgene.2021.559998
Mandakova T., Lysak M. A. Post-polyploid diploidization and diversification through dysploid changes // Curr. Opin. Plant Biol., 2018. - Vol. 42. - P. 55-65. DOI: 10.1016/j.pbi.2018.03.001
McHale L., Tan X., Koehl P., Michelmore R. W. Plant NBS-LRR proteins: adaptable guards // Genome Biology, 2006. -Vol. 7. - P. 1-11.
Nimmy M. S., Kumar V., Suthanthiram B., Subbaraya U., Nagar R., Bharadwaj C., Jain P. K., Krishnamurthy P. A systematic phylogenomic classification of the Multidrug and Toxic Compound Extrusion Transporter gene family in plants // Frontiers Plant Sci., 2022. - Vol. 13. - P. 774885. doi: 10.3389/fpls.2022.774885
Nishiyama T., SakayamaH., De Vries J., Buschmann H., Saint-MarcouxD., UllrichK. K., HaasF. B., Vanderstraeten L., Becker D., LangD., Vosolsobe S. The Chara genome: secondary complexity and implications for plant terrestrialization // Cell, 2018. - Vol. 174. - P. 448-464. DOI: 10.1016/j.cell.2018.06.033
Novak S. J., Soltis D. E., Soltis P. S. Ownbey’s Tragopogons: 40 years later // Amer. J. Botany, 1991. - Vol. 78. -P. 1586-600.
Ohno S. Evolution by gene duplications. - Berlin; New York: Springer-Verlag, 1970. - 129 p.
Omote H., Hiasa M., Matsumoto T., Otsuka M., Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations // Trends Pharmacol. Sci., 2006. - Vol. 27. - P. 587-593. DOI: 10.1016/j. tips.2006.09.001
Panchy N., Lehti-Shiu M., Shiu S. H. Evolution of gene duplication in plants // Plant Physiology, 2016. - Vol. 171. -P. 2294-2316.
Sacerdot C., Louis A., Bon C., Berthelot C., Roest Crollius H. Chromosome evolution at the origin of the ancestral vertebrate genome // Genome Biol., 2018. - Vol. 19. - P. 1-15. DOI: 10.1186/s13059-018-1559-1
Shao Z. Q., Xue J. Y., Wang Q., Wang B., Chen J. Q. Revisiting the origin of plant NBS-LRR genes // Trends in Plant Sci. 2019. - Vol. 24. - P. 9-12.
Stephens S. G. Possible significance of duplication in evolution // Adv. Genet., 1951. - Vol. 4. - P. 247-265.
Urbanska K. M., Hurka H., Landolt E., Neuffer B., Mummenhoff K. Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Switzerland: biosystematic and molecular evidence // Plant Syst. Evol., 1997. -Vol. 204. - P. 233-256.
Van Buren R., Pardo J., Man Wai C., Evans S., Bartels D. Massive tandem proliferation of ELIPs supports convergent evolution of desiccation tolerance across land plants // Plant Physiology, 2019. - Vol. 179. - P. 1040-1049.
Xing H., Pudake R.N., Guo G., Xing G., Hu Z., Zhang Y., Sun Q., Ni Z. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize // BMC Genomics, 2011. - Vol. 12. - P. 1-13.
Xu S., Wang J., Guo Z., He Z., Shi S. Genomic convergence in the adaptation to extreme environments // Plant Communications, 2020. - Vol. 1. - P. 100117.