Leaf trait relationships with species ecological optimum and sustainability across wetland plants

УДК 581.526.3:581.522.5+581.45(571.54)

  • D. A. Ronzhina Institute Botanic Garden; Tyumen State University Email: dar03@mail.ru
  • Yu. A. Rupyshev Institute of General and Experimental Biology SB RAS Email: dar03@mail.ru
  • L. A. Ivanova Institute Botanic Garden; Tyumen State University Email: dar03@mail.ru
  • S. V. Migalina Institute Botanic Garden; Tyumen State University Email: dar03@mail.ru
  • L. A. Ivanov Institute Botanic Garden; Tyumen State University Email: dar03@mail.ru
Keywords: Chlorophyll content, chlorophyll photosynthetic activity, climate, edaphic factors, LDMC, leaf area, leaf density, LMA, tolerance index, Tsyganov’ scales

Abstract

Structural and functional parameters of leaves were studied in 19 dominant and abundant species growing in shallows and wet riversides at the mouth of the Maksimikha River (Barguzinsky district, Republic of Buryatia). To evaluate the species ecological optimum Tsyganov’ scales were used (Tsyganov, 1983). To assess the resistance, the potential ecological valence of the species on the illumination scale, as well as the climatic and soil tolerance indices of the species were applied (Zhukova et al., 2010). It was shown that the index of climatic tolerance of the species was negatively correlated with the leaf mass per area (LMA) (r = -0,68) and positively with the chlorophyll photosynthetic activity of (r = 0,51). A tendency was revealed to decrease in LMA and leaf dry matter content (LDMC) and increase in the chlorophyll photosynthetic activity in more thermophilic wetland plants. Leaf area positively correlated with the scores of the species optimum on the soil moisture and acidity scales (r = 0,59 and r = 0,72, respectively). LMA, the content and photosynthetic activity of chlorophyll correlated with the optimum scores on the soil nitrogen supply scale (r = -0,53, r = -0,50 and r = 0,72, respectively). The tolerance index of the species to soil factors was associated only with the content of chlorophylls (r = 0,68) and carotenoids (r = 0,55) per unit leaf area. The potential ecological valence of the species to illumination was positively correlated with leaf density and LDMC (r = 0,58 and r = 0,57, respectively). It was concluded that the thermoclimatic optimum of species of wetland plants, as well as their climate sustainability, are associated with changes in the LMA and chlorophyll photosynthetic activity. Edaphic factors had a greater influence on the structural and functional parameters of leaves than climatic ones, which manifested in a large number of relationships between soil scales and leaf traits. Wetland plant tolerance to a wider range of edaphic conditions was associated with a high content of chlorophylls and carotenoids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Горышина Т. К. Экология растений. - М.: Высш. школа, 1979. - 368 с.

Жукова Л. А., Дорогова Ю. А., Турмухаметова Н. В., Гаврилова М. Н., Полянская Т. А. Экологические шкалы и методы анализа экологического разнообразия растений. - Йошкар-Ола: Мар. гос. ун-т, 2010. - 368 с.

Ронжина Д. А., Иванов Л. А., Иванова Л. А. Разнообразие листовых параметров у прибрежно-водных растений Монголии // Проблемы ботаники Южной Сибири и Монголии. - Т. 18, № 1. - Барнаул: Изд-во АлтГУ, 2019. -С. 523-526. DOI: 10.14258/pbssm.2019110 137

Ронжина Д. А., Рупышев Ю. А., Иванова Л. А., Мигалина С. В., Иванов Л. А. Функциональные свойства прибрежно-водных растений и сообществ в устье реки Максимиха (Республика Бурятия, Россия) // Разнообразие почв и биоты Северной и Центральной Азии: материалы IV Всерос. науч. конф. с междунар. участием (г. Улан-Удэ, 15-18 июня 2021 г.). - Улан-Удэ: Изд-во БНЦ СО РАН, 2021. - С. 391-394.

Слемнев Н. Н., Шереметьев С. Н., Маслова Т. Г., Цоож Ш., Алтанцоож А. Разнообразие фотосинтетического аппарата растений: анализ биологических, экологических и эволюционных рядов // Бот. журн., 2012. - Т. 97. -С. 1377-1396.

Цыганов Д. Н. Фитоиндикация экологических режимов в подзоне хвойношироколиственных лесов. - М.: Наука, 1983. - 198 с.

Ivanov L. A., Migalina S. V., Ronzhina D. A., Tumurjav S., Gundsambuu T., Bazha S. N., Ivanova L. A. Altitude-dependent variation in leaf structure and pigment content provides the performance of a relict shrub in mountains of Mongolia // Ann. Appl. Biol., 2022. - Vol. 181. - P. 321-331. DOI: 10.1111/aab.12778

Lambers H., Chapin F. S., Pons T. L. Plant physiological ecology. - New York: Springer-Verlag, 1998. - 540 pp. Ronzhina D. A. Distribution, competitive ability, and seed production of Bidens frondosa L. in the Middle Urals // Russ. J. Biol. Invasions, 2017. - Vol. 8. - P. 351-359. DOI: 10.1134/S2075111717040099

Ronzhina D. A. Ecological differentiation between invasive and native species of the genus Epilobium in riparian ecosystems is associated with plant functional traits // Russ. J. Biol. Invasions, 2020. - Vol. 11. - P. 132-142. DOI: 10.1134/ S2075111720020071

Ronzhina D. A. Variation in leaf pigment complex traits of wetland plants is related to taxonomy and life forms // Diversity, 2023. - Vol. 15. - Article number 372. DOI: 10.3390/d15030372

Ronzhina D. A., Ivanov L. A., Lambers G., P’yankov V. I. Changes in chemical composition of hydrophyte leaves during adaptation to aquatic environment // Russ. J. Plant Physiol., 2009. - Vol. 56. - P. 355-362. DOI: 10.1134/ S102144370903008X

Ronzhina D. A., Ivanova L. A., Ivanov L. A. Leaf functional traits and biomass of wetland plants in forest and steppe zones // Russ. J. Plant Physiol., 2019. - Vol. 66. - P. 393-402. DOI: 10.1134/S1021443719030129

Ronzhina D. A., Nekrasova G. F., P’yankov V. I. Comparative characterization of the pigment complex in emergent, floating, and submerged leaves of hydrophytes // Russ. J. Plant Physiol., 2004. - Vol. 51. - P. 21-27. DOI: 10.1023/B:RUP P.0000011299.93961.8f

Ronzhina D. A., P’yankov V. I. Structure of the photosynthetic apparatus in leaves of freshwater hydrophytes: 1. General characteristics of the leaf mesophyll and a comparison with terrestrial plants // Russ. J. Plant Physiol., 2001. - Vol. 48. -P. 567-575. DOI: 10.1023/A:1016733015194

Wellburn A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution // J. Plant Physiol., 1994. - Vol. 144. - P. 307-317. DOI: 10.1016/S0176-1617(11)81192-2

Wetzel R.G. Limnology. Lake and River Ecosystems. - San Diego: Academic Press, 2001. - 678 p.

Wright I. J., Dong N., Maire V., Prentice I. C., Westoby M., Diaz S., Gallagher R. V., Jacobs B. F., Kooyman R., Law E. A., Leishman M. R., Niinemets U., Reich P. B., Sack L., Villar R., WangH., Wilf P. Global climatic drivers of leaf size // Science, 2017. - Vol. 357. - P. 917-921. DOI: 10.1126/science.aal4760

Wright I. J., Reich P. B., Cornelissen J. H. C., Falster D. S., Groom P. K., Hikosaka K., Lee W., Lusk C. H., Niinemets U., Oleksyn J., Osada N., Poorter H., Warton D. I., Westoby M. Modulation of leaf economic traits and trait relationships by climate // Global. Ecol. Biogeogr., 2005. - Vol. 14. - P. 411-421. DOI: 10.1111/j.1466-822x.2005.00172.x

Yamori W., Nagai T., Makino A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species // Plant, Cell and Environ., 2011. - Vol. 34. - P. 764-777. DOI: 10.1111/j.1365-3040.2011.02280.x

Yang Y., Wang H., Harrison S. P., Prentice I. C., Wright I. J., Peng C., Lin G. Quantifying leaf-trait covariation and its controls across climates and biomes // New Phytologist, 2018. - Vol. 221. - P. 155-168. DOI: 10.1111/nph.15422

Published
2023-12-04
How to Cite
Ronzhina D. A., Rupyshev Y. A., Ivanova L. A., Migalina S. V., Ivanov L. A. Leaf trait relationships with species ecological optimum and sustainability across wetland plants // Проблемы ботаники Южной Сибири и Монголии, 2023. Vol. 22, № 2. P. 290-294 DOI: 10.14258/pbssm.2023143. URL: http://journal.asu.ru/bpssm/article/view/pbssm.2023143.