Features of speciation in flowering plants from the point of view of evolutionary genomics

УДК 575.1/.8+577.2+58

  • A. V. Rodionov Komarov Botanical Institute Email: avrodionov@mail.ru
  • V. S. Shneyer Komarov Botanical Institute Email: shneyer@rambler.ru
Keywords: Allopolyploidy, interspecific hybridization, polyploidy, WGD

Abstract

According to professor Rudolf V. Kamelin, the units of the evolutionary process in plants, in contrast to the animal world, are not only species, but also long-term coexisting populations of several different species, whose plants more or less regularly interbreed, up to complex obligate syngameons that unite all species of a genus or even species of different genera. Whole-genome sequencing of flowering plants genomes has shown that established ideas about polyploid genomes as simple combinations of linkage groups/various alleles obtained from parental species, only occasionally modified by intergenomic translocations, are far from reality. One gets the impression that on short segments of the evolutionary path, interspecific hybridization accompanied by whole-genome duplication, easily forming new, reproductively isolated from diploid ancestors polyploid species (we emphasize - new species), does not create anything fundamentally new, that phenotypic cosewuences of newly appeared recessive mutations can not be tested by natural selection as they are buffered by dominant allel(s) in the polyploid genome. On the contrary, it can be seen that in the long term, often millions of years after WGD, the genome of polyploids is secondarily diploidized, the carriers of the secondarily diploidized genomes,- the descendants of polyploids (paleopolyploids), get a chance to enter a state of “explosive” speciation (diversification) and give rise to new large supraspecific taxa.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Вульф Е. В. Иозеф Кёльрейтер, его жизнь и научные труды // Кёльрейтер И. Ученье о поле и гибридизации растений. - М.; Л.: ОГИЗ-Сельхозгиз, 1940. - С. 9-46.

Камелин Р. В. Лекции по систематике растений: главы теоретической систематики растений. - Барнаул: АзБука, 2004. - 226 с.

Камелин Р. В. Концепция вида и отражение эйдологической ситуации // Флора Алтая. - Барнаул: АзБука, 2005. - Т. 1. - С. 9-22.

Камелин Р. В. Особенности видообразования у цветковых растений // Труды Зоологического ин-та РАН. Приложение № 1, 2009. - С. 141-149.

Карпеченко Г. Д. Полиплоидные гибриды Raphanus sativus L. x Brassica oleracea L. (к проблеме экспериментального видообразования) // Тр. по прикл. ботанике, генетике и селекции, 1927. - Т. 17, вып. 3. - С. 305-410.

Родионов А. В. Межвидовая гибридизация и полиплоидия в эволюции растений // Вавиловский журнал генетики и селекции, 2013. - Т. 17, №4(2). - С. 916-929.

Родионов А. В. Тандемные дупликации генов, эуполиплоидия и вторичная диплоидизация - генетические механизмы видообразования и прогрессивной эволюции в мире растений // Turczaninowia, 2022. - Т. 25. - С. 87-121. DOI: 10.14258/turczaninowia.25.4.12

Родионов А. В. Эуполиплоидия как способ видообразования у растений // Генетика, 2023. - Т. 59, №5. - С. 493506. DOI: 10.31857/S0016675823050119

Anderson E. Hybridization of the habitat // Evolution, 1948. - Vol. 2. - P. 1-9.

Bateson B. William Bateson, F. R. S., Naturalist: His Essays & Addresses, Together With A Short Account Of His Life. -Cambridge: The University press, 1928. - Р. 93.

Dodsworth S., Chase M. W., Leitch A. R. Is postpolyploidization diploidization the key to the evolutionary success of angiosperms? // Bot. J. Linn. Soc., 2016. - Vol. 180. - P. 1-5. DOI: 10.1111/boj.12357

Evtushenko E. V., Lipikhina Y. A., Stepochkin P. I., Vershinin A. V. Cytogenetic and molecular characteristics of rye genome in octoploid Triticale (x Triticosecale Wittmack) // Comp. Cytogenet, 2019. - Vol. 13. - P. 423-434. DOI: 10.3897/ CompCytogen.v13i4.39576

Goulet B. E., Roda F., Hopkins R. Hybridization in plants: old ideas, new techniques // Plant physiology, 2017. -Vol. 173. - P. 65-78. DOI: /10.1104/pp.16.01340

Laurie D. A., Bennett M. D. The timing of chromosome elimination in hexaploid wheat x maize crosses // Genome, 1989. - Vol. 32. - P. 953-961. DOI: 10.1139/g89-537

Levin D. A., Wilson A. C. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time // Proc. Natl Acad. Sci., 1976. - Vol. 73. - P. 2086-2090. DOI: 10.1073/pnas.73.6.2086

Levy A. A., Feldman M. Evolution and origin of bread wheat // The Plant Cell., 2022. - Vol. 34. - P. 2549-2567. DOI: 10.1093/plcell/koac130

LiZ.,McKibbenM. T., Finch G. S., BlischakP. D., SutherlandB. L., Barker M. S. Patterns and processes of diploidization in land plants // Annu. Rev. Plant Biol., 2021. - Vol. 72. - P. 387-410. DOI: 10.1146/annurev-arplant-050718-100344

Lim K. Y., Soltis D. E., Soltis P. S., Tate J., Matyasek R., Srubarova H., Kovarik A., Pires J. C., Xiong Z., Leitch A. R. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae) // PloS One, 2008. - Vol. 3(10). -e3353. DOI: 10.1371/journal.pone.0003353

Linnaeus C. Disquisitio de sexu plantarum. Amoenitates Acad., 1760. - T. 10. - Р. 100-131.

Liu H., Wang X., Wang G., Сгш, P., Wu S., Ai C., Hu N., Li A., He B., Shao X., Wu Z., Feng H., Chang Y., Mu D., Hou J., Dai X., Yin T., Ruan J., Cao F. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution // Nature Plants, 2021. - Vol. 7. - P. 748-756. DOI: 10.1038/s41477-021-00933-x

Liu Y., Wang S., Li L., Yang T., Dong S., Wei T., Wu S., Liu Y., Gong Y., Feng X., Ma J., Chang G., Huang J., Yang Y., Wang H., Liu M., Xu Y., Liang H., Yu J., Cai Y., Zhang Z., Fan Y., Mu W., Sahu S. K., Liu S., Kang X., Yang L., Li N., Habib S., Yang Y., Lindstrom A. J., Liang P., Goffinet B., Zaman S., Wegrzyn J. L., Li D., Liu J., Cui J., Sonnenschein E. C., WangX., Ruan J., Xue J.-Y., Shao Z.-Q., Song C., Fan G., Li Z., ZhangL., Liu J., Liu Z.-J., Jiao Y., WangH., WangE., Lisby M., Yang H., Wang J., Liu X., Xu X., Li N., Soltis P. S., Van de Peer Y., Soltis D. E., Gong X., Liu H., Zhang S. The Cycas genome and the early evolution of seed plants // Nature Plants, 2022. - Vol. 8. - P. 389-401. DOI: 10.1038/s41477-022-01129-7

Mandakova T., Lysak M. A. Post-polyploid diploidization and diversification through dysploid changes // Curr. Opin. Plant Biol., 2018. - Vol. 42. - P. 55-65. DOI: 10.1016/j.pbi.2018.03.001

Mayrose I., Zhan S. H., Rothfels C. J., Magnuson-Ford K., Barker M. S., Rieseberg L. H., Otto S. P. Recently formed polyploid plants diversify at lower rates // Science, 2011. - Vol. 333. - P. 1257-1257. DOI: 10.1126/science.120720

Muntzing A. Outlines to a genetic monograph for the genus Galeopsis: With special reference to the nature and inheritance of partial sterility // Hereditas, 1930. - Vol. 13. - P. 185-341.

Otto S. P., Whitton J. Polyploid incidence and evolution // Annual review of genetics, 2000. - Vol. 34. - P. 401-437. DOI: 10.1146/annurev.genet.34.1.401

RiceA., Smarda P., NovosolovM., Drori M., Glick L., Sabath N., Meiri S., Belmaker J., Mayrose I. The global biogeography of polyploid plants // Nature Ecology & Evolution, 2019. - Vol. 3. - P. 265-273. DOI: 10.1038/s41559-018-0787-9

RiesebergL. H., Raymond O., Rosenthal D. M., Lai Z., Livingstone K., Nakazato T., Durphy J. L., Schwarzbach A. E., Donovan L. A., Lexer C. Major ecological transitions in wild sunflowers facilitated by hybridization // Science, 2003. -Vol. 301. - P. 1211-1216. DOI: 10.1126/science.1086949

Rutledge S. D., Cimini D. Consequences of aneuploidy in sickness and in health // Curr. Opin. Cell. Biol., 2016. -Vol. 40. - P. 41-46. DOI: 10.1016/j.ceb.2016.02.003

Sanei M., PickeringR., Kumke K., Nasuda S., Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids // Proc. Natl Acad. Sci. U.S.A, 2011. -Vol. 108. - P. E498-E505. DOI: 10.1073/pnas.110319010

Schranz M. E., Mohammadin S., Edger P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model // Curr. Opin. Plant Biol., 2012. - Vol. 15. - P. 147-153. DOI: 10.1016/j.pbi.2012.03.011

Schubert I., Lysak M. A. Interpretation of karyotype evolution should consider chromosome structural constraints // Trends in Genetics, 2011. - Vol. 27. - P. 207-216. DOI: 10.1016/j.tig.2011.03.004

Sears E. R. Cytogenetic studies with polyploid species of wheat. II. Additional chromosomal aberrations in Triticum vulgare // Genetics, 1944. - Vol. 29. - P. 232-246.

Soltis D. E., Visger C. J., Marchant D. B., Soltis P. S. Polyploidy: pitfalls and paths to a paradigm // Am. J. Botany, 2016. - Vol. 103. - P. 1146-1166. DOI: 10.3732/ajb.1500501

Soltis P. S., Soltis D. E. The role of hybridization in plant speciation // Annu Rev. Plant Biol., 2009. - Vol. 60. - P. 561588. DOI: 10.1146/annurev.arplant.043008.092039

Stebbins G. L. The origin and success of polyploids in the boreal circumpolar flora: a new analysis // Trans. Bot. Sci. Edinburgh, 1986. - Vol. 45. - P. 17-31.

Stebbins G. L. The role of hybridization in evolution // Proc. Am. Philos. Soc., 1959. - Vol. 103. - P. 231-251.

Suissa J. S., Kinosian S. P., Schafran P. W., Bolin J. F., Taylor W. C., Zimmer E. A. Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoetes) complex // Mol. Phylogen. Evol., 2022. - Vol. 166. - P. 107332. DOI: 10.1016/j.ympev.2021.107332

Sutherland B. L., Galloway L. F. Postzygotic isolation varies by ploidy level within a polyploid complex // New Phytologist., 2017. - Vol. 213. - P. 404-412. DOI: 10.1111/nph.14116

Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy // Nature Rev. Genet., 2017. -Vol. 18. - P. 411-424. DOI: 10.1038/nrg.2017.26

Van Steenis C. G. G. J. Autonomous evolution in plants: differences in plant and animal evolution // Gardens’ Bulletin, Singapore, 1976. - Vol. 29. - P. 103-126.

Van Steenis C. G. G. J. Patio ludens and extinction of plants // Notes from the Royal Botanic Garden, Edinburgh, 1978. - Vol. 36. - P. 317-323.

Wilks W. (Ed.) Report of the Third International Conference1906 on Genetics: Hybridisation (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant-breeding. - London: Sporttiswoode & Co., 1906. - 492 p.

Winterfeld G., Schneider J., Perner K., Roser M. Polyploidy and hybridization as main factors of speciation: complex reticulate evolution within the grass genus Helictochloa // Cytogen. Genome Res., 2014. - Vol. 142. - P. 204-225. DOI: 10.1159/000361002

Yen C., Yang J.-L., Yen Y. Hitoshi Kihara, Askell Love and the modern genetic concept of the genera in the tribe Triticeae (Poaceae) // J. Syst. Evol., 2005. - Vol. 43. - P. 82-93.

Zhan S. H., Otto S. P., Barker M. S. Broad variation in rates of polyploidy and dysploidy across flowering plants is correlated with lineage diversification // bioRxiv.- 2021. this version posted March 31, 2021. DOI: 10.1101/2021.03.30.436382

Zhang A., Li N., Gong L., Gou X., Wang B., Deng X., Li C., Dong Q., Zhang H., Liu B. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat // Plant Physiol., 2017. - Vol. 175. - P. 828-847. DOI: 10.1104/pp.17.00819

Published
2024-07-19
How to Cite
Rodionov A. V., Shneyer V. S. Features of speciation in flowering plants from the point of view of evolutionary genomics // Проблемы ботаники Южной Сибири и Монголии, 2024. Vol. 23, № 1. P. 235-240 DOI: 10.14258/pbssm.2024042. URL: http://journal.asu.ru/bpssm/article/view/pbssm.2024042.