COMPARATIVE ANALYSIS OF MACHINE LEARNING METHODS USED IN CYBER-PHYSICAL INTRUSION DETECTION SYSTEMS

Main Article Content

A.D. Alshaibi Email: ahmed.jamal.alshaibi88@gmail.com
M.M. Al-Ani
A.A. Konev

Abstract

.

Downloads

Download data is not yet available.

Article Details

How to Cite
1. Alshaibi A., Al-Ani M., Konev A. COMPARATIVE ANALYSIS OF MACHINE LEARNING METHODS USED IN CYBER-PHYSICAL INTRUSION DETECTION SYSTEMS // ПРОБЛЕМЫ ПРАВОВОЙ И ТЕХНИЧЕСКОЙ ЗАЩИТЫ ИНФОРМАЦИИ, 2023. № 9. P. 4-6. URL: http://journal.asu.ru/ptzi/article/view/13605.
Section
Проблемы технического обеспечения информационной безопасности

References

Laqtib S. A technical review and comparative analysis of machine learning techniques for intrusion detection systems in MANET / S. Laqtib, K. El Yassini, M.L Hasnaoui // International Journal of Electrical and Computer Engineering (IJECE). 2020. Т.10. – № 3. – С. 2701.

Mahfouz A.M. Comparative Analysis of ML Classifiers for Network Intrusion Detection / A.M. Mahfouz, D.Venugopal, S.G. Shiva // Advances in Intelligent Systems and Computing. 2020. – С. 193–207.

Sivaprasad A. Comparative Analysis of Machine Learning Algorithms Based on the Outcome of Proactive Intrusion Detection System / A. Sivaprasad // SSRN Electronic Journal. 2020. – Т. 10 – № 5 – С.32-37

Yadav R. Comparative Study of Datasets used in Cyber Security Intrusion Detection / R. Yadav, P. Pathak, S. Saraswat // International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2020. – С. 302–312.

Новохрестов А.К., Никифоров Д.С., Конев А.А., Шелупанов А.А. Модель угроз безопасности автоматизированной системы коммерческого учета энергоресурсов / А.К. Новохрестов, Д.С. Никифоров, А.А. Конев [и др.] // Доклады ТУСУРа. 2016. – Т.19. – №3. – С. 111-114.

Bardamova M. Fuzzy classifier design for network intrusion detection using the gravitational search algorithm / M. Bardamova, A. Konev, I. Hodashinsky [и др.] // IOP Conf. Series: Journal of Physics: Conf. Series. 2019. – № 1145. – С. 6