Abstract
The decomposition of leaf blades in deciduous forests occurs both as a result of chemical processes involved in destruction, and due to the work of fungi, bacteria, as well as invertebrate phyto- and detritophages. Microbes and invertebrate shredders are involved in the first stages of active destructurization of leaf litter and other large plant parts. Then bacteria and fungi colonize the leaf, softening it. At the same time, leaf litter of various types of wood can vary greatly in chemical composition, which requires control measures when evaluating its qualitative characteristics as a potential secondary raw material. Some types of litter are rich in nutrients or carbon that can be easily disposed of (labile carbon), while others are poor in nutrients or contain high concentrations of organic compounds such as lignin that are resistant to decomposition (persistent carbon). Studies of aspen leaves exposed to biodegradation in conditions natural fermentation in the zone of stable humidification in the Northwestern region by IR spectroscopy showed that for most samples the content of CH (alkane) groups increases in fermented samples compared with unfermented ones, and the content of -OH and C=C groups tend to decrease during fermentation, changes in the number of carbonyl groups do not occur significantly.
References
2. Брель А. К. Спектральные методы анализа органических соединений [Текст] Брель А. К., Василькова Е. А., Ниязов Л. Н., Хайдаров А. А., Ахмедов В. Н. - Бухара: Издательство “Durdona”, 2019. 105 c.
3. Вшивкова Т. С., Иваненко Н. В., Якименко Л. В., Дроздов К. А. Введение в биомониторинг пресных вод // Учебное пособие Редактор М.А. Шкарубо Владивосток Издательство ВГУЭС. 2019. 241 с.
4. Дучко М. А., Гулая Е. В., Серебреникова О. В., Стрельникова Е. Б., Прейс Ю. И. Распределение н-алканов, стероидов и тритерпеноидов в торфе и растениях болота Тёмное // Известия Томского политехнического университета. 2013. Т. 323. № 1 С.40-44.
5. Киселева А. А. Палеореконструкция условий и источников вещества углеобразования // Проблемы геологии и освоения недр с. 47-48. Available from: https://core.ac.uk/download/pdf/132418741.pdf
6. Миндубаев А.З. Биодеградация? Нет, биосинтез // Национальные приоритеты России. 2021. № 4 (43) С. 89-102.
7. Ситникова В. Е. Практикум по колебательной спектроскопии: Учебное пособие / Т.Н. Носенко, В.Е. Ситникова, И.Е. Стрельникова, М.И. Фокина– СПб: Университет ИТМО, 2021. 173 с.
8. Тарасевич Б. Н. ИК спектры основных классов органических соединений. Справочные материалы. Москва. 2012. 54с.
9. Gessner M. O. et al. (Mark O. Gessner, Christopher M. Swan, Christian K. Dang, Brendan G. McKie, Richard D. Bardgett, Diana H. Wall, Stephan Hättenschwiler Diversity meets decomposition // Trends Ecol. Evol. 2010. V. 25, I 6 P. 372–380.
10. Gustavo H. Migliorini, Gustavo Q. Romero Warming and leaf litter functional diversity, not litter quality, drive decomposition in a freshwater ecosystem // Scientific Reports | 2020 11p 10:20333 https://doi.org/10.1038/s41598-020-77382-7.
11. Восстановление нитратного азота у растений. Available from: https://studopedia.ru/1_121325_vosstanovlenie-nitratnogo-azota-v rasteniyah.html?ysclid=ly9y8nb9fi299070666/

This work is licensed under a Creative Commons Attribution 4.0 International License.