Use of fruits with different storage periods in the study of ploidy and DNA content of Peucedanum vaginatum Ledeb. (Umbelliferae Juss.) by flow cytometry
UDC 576.3:582.893
Abstract
In this paper, using Peucedanum vaginatum as an example, we consider methodological issues related to the possibility of using Umbelliferae fruits of different storage periods to determine the genome size and ploidy levels by flow cytometry. The structural features of the fruits determine the configuration of the fluorescence signal, when the predominant peak in the histograms corresponds to the triploid endosperm, which occupies most of the seed, and the weak peak corresponds to the diploid small embryo. The seed coat and the pericarp fused with it, being dry and consisting of dead cells, do not participate in the formation of the signal. As the storage period increases, the number of registered events decreases, the embryo peak disappears, and deviations in the values of the genome size increase up to 27 %, therefore, information on the DNA content is only approximate and can be used to estimate the ploidy level. Nevertheless, the possibility of using herbarium material with mature fruits, the storage periods of which can exceed 100 years, provides karyological studies with a wide sample and large-scale geographic coverage.
Downloads
Metrics
References
Ростовцева Т. С. Числа хромосом ряда видов семейства Apiaceae на юге Сибири // Бот. журн., 1976. – Т. 61. – № 1. – С. 93–99.
Скапцов М. В., Куцев М. Г. Возможности проточной цитометрии в современной науке о растениях // Проблемы ботаники Южной Сибири и Монголии, 2014. – Т. 13. – C. 204–207.
Скапцов М. В., Смирнов С. В., Куцев М. Г., Шмаков А. И. Проблемы стандартизации в проточной цитометрии растений // Turczaninowia, 2016. – Т. 19. – № 3. – С. 120–122. https://doi.org/10.14258/turczaninowia.19.3.9
Čertner M., Lučanová M., Sliwinska E., Kolář F., Loureiro J. Plant material selection, collection, preservation, and storage for nuclear DNA content estimation // Cytometry Part A, 2022. – Vol. – 101. – N 9. – P. 737–748. https://doi.org/10.1002/cyto.a.24482
Daushkevich J. V., Alexeeva T. V., Pimenov M. G. IOPB chromosome data 10 // Int. Org. Pl. Biosyst. Newsletter, 1995. – Vol. 25. – P. 7–8.
Doležel J., Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size // Ann. Bot., 2005. – Vol. 95. – N 1. – P. 99–110. https://doi.org/10.1093/aob/mci005
Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M., Nardi L., Obermayer R. Plant genome size estimation by flow cytometry: inter-laboratory comparison // Ann. Bot., 1998. – Vol. 82. – P. 17–26. https://doi.org/10.1093/oxfordjournals.aob. a010312
Doležel J., Greilhuber J., Suda J. Flow cytometry with plants: an overview // Flow cytometry with plant cells. – Weinheim: Wiley-VCH., 2007. – P. 41–66. https://doi.org/10.1002/9783527610921.ch3
Haig D. Poles apart: monosporic, bisporic and tetrasporic embryo sacs revisited // Front. Ecol. Evol., 2020. – Vol. 8. https://doi.org/10.3389/fevo.2020.516640
Pfosser M., Heberle-Bors E., Amon A., Lelley T. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat–rye addition lines // Cytometry Part A, 1995. – Vol. 21. – N 4. – P. 387–393. https://doi.org/10.1002/cyto.990210412
Ptáček J., Sklenář P., Pinc J., Urfusová R., Calviño C. I., Urfus T. A pentaploid endosperm and a Penaea-type embryo sac are likely synapomorphies of Azorella (Apiaceae, Azorelloideae) // Pl. Syst. Evol., 2022. – Vol. 308. – P. 1–10. https://doi.org/10.1007/s00606-022-01833-z
Skaptsov M. V., Kutsev M. G., Smirnov S. V., Vaganov A. V., Uvarova O. V., Shmakov A. I. Standards in plant flow cytometry: an overview, polymorphism and linearity issues // Turczaninowia, 2024. – Vol. 27. – N 2. – P. 86–104. https://doi.org/10.14258/turczaninowia.27.2.10
Sliwinska E., Zielinska E., Jedrzejczyk I. Are seeds suitable for flow cytometric estimation of plant genome size? // Cytometry Part A, 2005. – Vol. 64. – P. 72–79.