БИОТЕХНОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ ЭМБРИОНАЛЬНЫХ ФОРМ МУРАВЬЕВ

Ключевые слова

экстракты
яйца
муравьи
природные соеднинения
биотехнологии

Как цитировать

Власова А., Липатова О., Моргунова М., Шелковникова В., Дмитриева М., Тельнова Т., Мартынова Е., Малыгина Е., Имидоева Н., Белышенко А., Шашкина С., Вавилина Т., Баталова А., Листопад А., Аксенов-Грибанов Д. БИОТЕХНОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ ЭМБРИОНАЛЬНЫХ ФОРМ МУРАВЬЕВ // BIOAsia-Altai, 2024. Т. 4, № 1. С. 286-288. URL: http://journal.asu.ru/bioasia/article/view/16345.

Аннотация

В ходе проведенного исследования выявлено, что экстракты яиц муравьев содержат циклические дипептиды, которые обладают антимикробной активностью в отношении некоторых штаммов микроорганизмов. Предположено, что яйца муравьев представляют большой интерес с точки зрения содержания биологически активных веществ. 

Литература

1. Assessment of nutrients of escamoles ant eggs Limotepum apiculatum M. by spectroscopy methods / V. Melo-Ruiz [et al.] // Journal of Chemistry and Chemical Engineering. 2013. V. 7. №. 12. P. 1181.

2. De Roode J.C., Lefèvre T. Behavioral Immunity in Insects // Insects. 2012. V.3 №3. P. 789-820.

3. Efficacy of metabolites of a Streptomyces strain (AS1) to control growth and mycotoxin production by Penicillium verrucosum, Fusarium verticillioides and Aspergillus fumigatus in culture / A.M. Danial [et al.] // Mycotoxin Research. 2020. V. 36. № 2. С. 225-234.

4. External immunityin ant societies: sociality and colony size do not predict investmentin antimicrobials / C. Penick [et al.] // Royal Society Open Science. 2018. V. 5. P. 1-8.

5. Guarda C., Lutinski J.A. Glandular secretions of ants (Hymenoptera: Formicidae): A review on extraction, chemical characterization and antibiotic potential // Sociobiology. 2020. V. 67. № 1. Р.13–25.

6. Hilker M., Salem H., Fatouros N. E. Adaptive plasticity of insect eggs in response to environmental challenges //Annual Review of Entomology. 2023. V. 68. №. 1. P. 451-469.

7. Kaltenpoth M., Engl T. Defensive microbial symbionts in Hymenoptera // Functional Ecology. 2014. V. 28. №. 2. P. 315-327.

8. Kumar P., Kizhakkedathu J.N., Straus S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo // Biomolecules. 2018.V. 8. №. 1. P. 4.

9. Melo G.M., Fortich M.R.O. Actividad antibacterial de extractos de hormigas de los géneros Crematogastery Solenopsis // Revista Colombiana de Ciéncias Químico- Farmacéuticas. 2013. V. 42. P. 42-55.

10. Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(L-Val-L-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in multiple biological targets / N.M. Zin [et al.] // Archives of Microbiology. 2020. V. 202. №8. Р. 2083-2092.

11. Ruangpan L. Minimal inhibitory concentration (MIC) test and determination of antimicrobial resistant bacteria. Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment.: Aquaculture Department, Southeast Asian Fisheries Development Center, 2004. 31-55pp.

12. Secondary metabolites of the endophytic fungi Talaromyces wortmannii cultivated in maize medium and their bioactivity / B. Yang [et al.] // Chemistry of Natural Compounds. 2020. V. 56. С. 1143-1145.

13. Starr A.M., Zabet-Moghaddam M., San Francisco M. Identification of a novel secreted metabolite cyclo (phenylalanyl-prolyl) from Batrachochytrium dendrobatidis and its effect on Galleria mellonella // BMC microbiology. 2022. V. 22. №. 1. P. 293.

14. Tranter C., Fernandez-Marin A., Hughes W.O. Quality and quantity: transitions in antimicrobial gland use for parasite defense // Ecology and Evolution. 2015. V. 5. P. 5857-5868.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.