Leaf mesophyll structure and tree biomass of birches from different climatic zones in Northern Eurasia

УДК 581.1: 582.632.1

  • S. V. Migalina Botanic Garden UB RAS; Tyumen State University Email: Fterry@mail.ru
  • I. V. Kalashnikova Botanic Garden UB RAS; Tyumen State University Email: Fterry@mail.ru
Keywords: Adaptation, biomass, Betula pendula, Betula pubescens, climate, mesophyll cells sizes

Abstract

In the context of global climate change, it is becoming increasingly important to study the adaptation of forest-forming species, assess their productivity and predict the transformation of forest ecosystems. Here we present the analysis of leaf mesophyll structure and tree biomass in populations of Betula pendula Roth and Betula pubescens Ehrh. along the global climatic transect representing the latitudinal distribution area of these species in Northern Eurasia. It has been shown that with distance from climatic optimum, biological productivity decreases and a structural rearrangement of leaf mesophyll based on a change in cell size and providing a positive carbon balance occurs. High correlations between photosynthetic cells volumes and stem biomass were found. It was concluded that mesophyll cells sizes underlie the structural adaptation of photosynthesis to climate, that determine birch productivity under changing growth conditions. The sizes of photosynthetic cells can be considered as a good predictors of woody species productivity and transformation of forest ecosystems under global climatic changes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Анучин Н. П. Теория и практика организации лесного хозяйства. - Москва: Лесная пром-сть, 1977. - 176 с. Географический атлас / Под ред. Л. Н. Колосова. - Москва, Главное управление геодезии и картографии при СМ СССР, 1981. - 238 с.

Демиденко С. А. Объемы стволов березы в чистых березовых древостоях северной и средней подзон тайги Архангельской области // Вестник Поморского университета. Серия: естественные науки, 2011. - № 3. - С. 20-24.

Елсаков В. В., Марущак И. О. Тренды климатических изменений лесных фитоценозов западных склонов Приполярного Урала // Известия Самарского научного центра Российской академии наук, 2010. - Т. 12, №1(3). - C. 680-687.

Исаченко А. Г. Интенсивность функционирования и продуктивность геосистем // Известия Академии наук СССР. Серия географическая, 1990. - № 5. - C. 5-17.

Махнев А. К. Внутривидовая изменчивость и популяционная структура берез секции Albae и Nanae. -Москва: Изд-во «Наука», 1987. - 128 с.

Моисеев П. А., Шиятов С. Г., Григорьев А. А. Климатогенная динамика древесной растительности на верхнем пределе ее распространения на хребте Большой Таганай за последнее столетие. - Екатеринбург: изд-во УМЦ УПИ, 2016. - 136 с.

Earles J. M., Buckley T. N., Brodersen C. R., Busch F. A., Cano F. J., Choat B., Evans J. R., Farquhar G. D., Harwood R., Huynh M. et al. Embracing 3D complexity in leaf carbon-water exchange // Trends in Plant Science, 2019. -Vol. 24. -P. 15-24. DOI: 10.1016/j.tplants.2018.09.005

Ivanova L. A., Ivanov L. A., Ronzhina D. A., P’yankov V. I. Shading-induced changes in the leaf mesophyll of plants o different functional types // Russ. J. Plant Physiol., 2008. - Vol. 55. - P. 211-219. DOI: 10.1134/S1021443708020076 Ivanova L. A., Yudina P. K., Ronzhina D. A., Ivanov L. A., Holzel N. Quantitative mesophyll parameters rather than whole-leaf traits predict response of C3 steppe plants to aridity // New Phytologist, 2018. - Vol. 217, Iss. 2.- P. 558-570. DOI: 10.1111/nph.14840

Ivanova L. A., IvanovL. A., Ronzhina D. A., Yudina P. K., Migalina S. V., Shinehuu T., Tserenkhand G., Voronin P. Yu., Anenkhonov O., Bazha S. N., Gunin P. D. Leaf traits of C3- and C4-plants indicating climatic adaptation along a latitudinal gradient in Southern Siberia and Mongolia // Flora, 2019. - Vol. 254. - P. 122-134. DOI: 10.1016/j.flora.2018.10.008

Lehmeier C., Pajor R., Lundgren M. R., Mathers A., Sloan J., Bauch M., Mitchell A., Bellasio C., Green A., Bouyer D. et al. Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity // The Plant Journal, 2017. - Vol. 92. - P. 981-994. DOI: 10.1111/tpj.13727

Li Y., Reich P. B., Schmid B., Shrestha N., FengX., Lyu T., Maitner B. S., Xu X., Li Y., Zou D., Tan Z. -H., Su X., Tang, Z., Guo Q., FengX., Enquist B. J., WangZ. Leaf size of woody dicots predicts ecosystem primary productivity // Ecology Letters, 2020. - Vol. 23. - P. 1003-1013. DOI: 10.1111/ele.13503

Matsuura K., Willmott C. J. Terrestrial Air Temperature: 1900-2006 Gridded Monthly Time Series. Terrestrial Precipitation: 1900-2006 Gridded Monthly Time Series Ver. 1.01. 2007. URL: http://climate.geog.udel.edu/climate.

Migalina S. V., Ivanova L. A., Makhiev A. K. Size of the Leaf as a Marker of Birch Productivity at a Distance from the Climatic Optimum // Russian Journal of Plant Physiology, 2009. - Vol. 56, № 6. - P. 857-861. DOI: 10.1134/ S102144370906017X

Migalina S. V., Ivanova L. A., Makhnev A. K. Genetically Determined Volume of Mesophyll Cells of Birch Leaves as an Adaptation of the Photosynthetic Apparatus to Climate // Doklady Akademii Nauk, 2014. - Vol. 459, №. 6. - P. 765-768. DOI: 10.1134/S0012496614060106

Niinemets U., Portsmuth A., Truus L. Leaf structural and photosynthetic characteristics and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species // Annals of Botany, 2002. - Vol. 89. -P. 191-204. DOI:10.1093/aob/mcf025, available online at www.aob.oupjournals.org.

Roddy A. B., Theroux-Rancourt G., Abbo T., Benedetti J. W., Brodersen C. R., Castro M., Castro S., Gilbride A. B., Jensen B., Jiang G.F., Perkins J. A., Perkins S. D., Loureiro J., Syed Z., Thompson R. A., Kuebbing S. E., Simonin K. A. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies // International J. of Plant Sciences, 2019. - Vol. 181, №1. - P. 3-33. DOI: 10.1086/706186

Ronzhina D. A., Ivanova L.A., Ivanov L. A. Leaf functional traits and biomass of wetland plants in forest and steppe zones // Russian Journal of Plant Physiology, 2019. - Vol. 66, №3. - P. 393-402. DOI: 10.1134/S1021443719030129

Terashima I., Shin-IchiM., Hanba Y. I. Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf // J. Plant Res., 2001. - Vol. 114. - P. 93-105. DOI: 10.1007/PL00013972

Weraduwage S. M., Chen J., Anozie F. C., Morales A., Weise S. E., Sharkey T. D. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana // Frontiers in Plant Science, 2015. - Vol. 6. - P. 3-21. DOI: 10.3389/fpls.2015.00167

Published
2023-07-03
How to Cite
Migalina S. V., Kalashnikova I. V. Leaf mesophyll structure and tree biomass of birches from different climatic zones in Northern Eurasia // Проблемы ботаники Южной Сибири и Монголии, 2023. Vol. 22, № 1. P. 221-224 DOI: 10.14258/pbssm.2023043. URL: http://journal.asu.ru/bpssm/article/view/pbssm.2023043.