FORECASTING THE IMPLEMENTATION OF STRATEGIC DEVELOPMENT PROGRAMS OF THE MUNICIPALITY
УДК 332.145
Abstract
Forecasting is a prediction, a prediction of the development of the selected object of research in the future, based on the consideration of the patterns of development of this object in the past. The article presents the main goals, objectives and principles of forecasting the process of implementing strategic programs in the territory of the municipality. The algorithm and model of the process of implementing such programs proposed by us will make it possible to increase the effectiveness of regulating the process of implementing strategic direction programs, identify threats in the socio-economic development of the municipality in question, as well as immediately respond to changes in the external environment of the municipality and the internal needs of its development, develop and make decisions regarding the process in question, as well as conduct its correction. A model for predicting threats to municipal social and economic development is also proposed, which will allow taking into account factors that may affect the process under consideration, which will allow developing a set of measures to eliminate threats and increase the effectiveness of the process considered in this article.
Downloads
Metrics
References
Васютина Е. С., Королькова Н. А., Алмакаева Р. Н. Архитектура системы документов стратегического планирования: особенности становления на современном этапе развития // Экономика и предпринимательство. 2016. № 4 (ч. 1). С. 966-971.
Понятие и параметры прогнозирования. URL: https://imccenter.ru/ponyatiye-i-parametry-prognozirovaniya/ (дата обращения: 14.03.2023).
Аганбегян А. Г. О неотложных мерах по возобновлению социально-экономического роста // Проблемы прогнозирования. 2019. № 1. С. 3-15.
Афанасьев В. Н., Юзбашев М. М. Анализ временных рядов и прогнозирование. М., 2001.
Мандрикова О. В., Глушкова Н. В. Моделирование и анализ ионосферных данных на основе совмещения вейвлет-преобразования и моделей авторегрессии // Математические методы распознавания образов. 2011. № 1. С. 110-123.
Гранберг А. Г. Основы региональной экономики. М., 2001. 495 с.
Дуброва Т. А., Павлов Д. Э., Ткачев О. В. Корреляционно-регрессионный анализ в системе Statistica: учебное пособие. М., 1999.
Комков Н. И. Модели программно-целевого управления. М.: Наука, 1981.
Светуньков И. С., Светуньков С. Г. Методы социально-экономического прогнозирования: учебник и практикум. Модели и методы. М., 2016. 448 с.
Проблема классификации методов прогнозирования URL: https://www.mbureau.ru/blog/klassifikaciya-metodovprognozirovaniya-po-e-tihonovu (дата обращения: 14.03.2023).
REFERENCES
Vasyutina E. S., Korolkova N. A., Almakaeva R. N. Architecture of the system of strategic planning documents: features of formation at the present stage of development. Economics and entrepreneurship. 2016. No. 4 (part 1). Pp. 966-971.
The concept and parameters of prediction. URL: https://imccenter.ru/ponyatiye-i-parametry-prognozirovaniya/ (date of access: 03.14.2023).
Aganbegyan A. G. On urgent measures to resume socio-economic growth. Problems of forecasting. 2019. No. 1. Pp. 3-15.
Afanasyev V. N., Yuzbashev M. M. Time series analysis and forecasting. Moscow, 2001.
Mandrikova O. V., Glushkova N. V. Modeling and analysis of ionospheric data based on combining wavelet transform and autoregression models. Mathematical methods of pattern recognition. 2011. No. 1. Pp. 110-123.
Granberg A. G. Fundamentals of Regional Economics. Moscow, 2001. 495 p.
Dubrova T. A., Pavlov D. E., Tkachev O. V. Correlation and regression analysis in the Statistica system. A study guide. Moscow, 1999.
Komkov N. I. Models of program-target management. Moscow, 1981.
Svetunkov I. S., Svetunkov S. G. Methods of socio-economic forecasting: textbook and workshop. Models and methods. Moscow, 2016. 448 p.
The problem of classification of forecasting methods. URL: https://www.mbureau.ru/blog/klassifikaciya-metodovprognozirovaniya-po-e-tihonovu (date of access: 14.03.2023).
Copyright (c) 2024 Ольга Александровна Чиркова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Economics Profession Business is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Economics Profession Business (EPB) allows authors to deposit manuscripts (currently under review or those for intended submission to EPB) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).