CLUSTER ANALYSIS IN SOLVING THE PROBLEM OF TYPOLOGY OF REGIONS OF THE SIBERIAN FEDERAL DISTRICT BY THE LEVEL OF INCOME AND PROPERTY POTENTIAL OF THE POPULATION
УДК 314.68
Abstract
The article presents the methodology and results of the typology of the regions of the Siberian Federal District in terms of the income and property potential of the population. The authors use the method of multivariate classification — cluster analysis, the application of which in this study was carried out in stages using the Statistica software package. To measure the level of income and property potential of the population, a system of indicators was used, including income, as well as the provision of movable and immovable property to the population. As a result, the authors identified three groups of regions with different levels of income and property potential of the population. An analysis was carried out in which each resulting cluster is compared with the average values for the Siberian Federal District and the Russian Federation, as well as for indicators of the income and property potential of the population. The authors focus on the significant heterogeneity of the regions of the Siberian Federal District in terms of income and property indicators and point out the need for a differentiated approach when making decisions in the field of evidence-based state policy and a long-term strategy for the dynamic growth of the welfare of the population.
Downloads
Metrics
References
Маратканова И. В. Влияние факторов внутренней и внешней среды на сберегательное поведение домашних хозяйств России // Финансы и кредит. 2019. Т. 25. № 1 (781). С. 159-176.
Регионы России. Социально-экономические показатели. 2022: Стат. сб. / Росстат. М., 2022. 1112 с.
Бобков В. Н., Колмаков И. Б., Одинцова Е. В. Социальная структура российского общества по уровню жилищной обеспеченности. Критериальная и количественная идентификация, ориентиры для государственной политики // Уровень жизни населения регионов России. 2018. № 2. С. 8-23.
Бобков В. Н., Херрманн П., Колмаков И. Б., Одинцова Е. В. Двухкритериальная модель стратификации российского общества по доходам и жилищной обеспеченности // Экономика региона. 2018. Т. 14. Вып. 4. С. 1061-1075.
Булгаков В. В. Методологические аспекты анализа благосостояния населения // Вестник СГСЭУ. 2020. № 2 (81). С 26-29.
Кормишкин Е. Д., Горин В. А. Воздействие неравенства на экономический рост: теоретические и эмпирические подходы // Инновационное развитие экономики. 2018. № 5 (47). С. 46-51.
Repinskiy O. D., Gubanischeva M. A. Changes in housing construction industry in the Rf: securities as an alternative to Shared construction participation agreement // IOP Conference Series: Earth and Environmental Science. 2021. DOI: 10.1088/1755-1315/751/1/012169.
Гуляева Н. П. Дифференциация условий жизни населения как фактор миграционных процессов на территории Сибири // Экономика труда. 2018. Т. 5. № 1. С. 213-232.
Жаромский В. С., Мигранова Л. А., Токсанбаева М. С. Социально-экономическое неравенство в России: динамика и методы оценки // Народонаселение. 2018. Т. 21. № 4. С. 79-95.
Маслихова Е. А. Совершенствование методики оценки эффективности программ по улучшению жилищных условий населения // Наука и образование: история и современность: электронный сборник материалов 72-74 внутривузовских научно-практических конференций. 2021. С. 63-69.
Перская В. В. Всемирный экономический форум в Давосе: бедность и неравенство распределения доходов — порочные явления современного мирового развития // Экономика. Налоги. Право. 2019. Т. 12. № 2. С. 49-58.
Рябова Т. Ф., Сурай Н. М. Качество жизни населения России: состояние, проблемы, перспективы // Экономика Профессия Бизнес. 2022. № 2. С. 98-106.
Сергиенко А. М. Агропромышленные регионы: динамика доходов населения, неравенства и бедности // Экономика Профессия Бизнес. 2020. № 4. С. 108-117.
Андреева Е. И., Бычков Д. Г., Феоктистова О. А. Эффективность региональных политик социальной поддержки населения // Проблемы прогнозирования. 2021. № 5. С. 101-110.
Баликоев В. З., Маратканова И. В., Швецов Ю. Г. Оценка сберегательного потенциала домашних хозяйств Сибирского федерального округа: монография. Новосибирск, 2022. 207 с.
Леонидова Г. В., Басова Е. А., Рассадина М. Н. Кластерный анализ доходного неравенства населения российских регионов // Проблемы развития территории. 2022. Т. 26. № 6. С. 94-114.
Бикеева М. В., Моисеева И. В. Измерение экономического неравенства: проблемы, факты и оценка // Социальная статистика. 2019. № 6. С. 48-56
Голованова Л. А. Дифференциация уровня жизни населения в регионах Дальневосточного федерального округа // Вестник ТоГУ. 2019. № 4 (55). С. 45-54.
Звягинцева А. В., Швецова А. А. Кластерный анализ регионов России по показателям жилищно-коммунального хозяйства // Жилищное строительство. 2018. № 8. С. 40-43.
Россошанский А. И. Типология регионов России по показателям качества жизни населения // Государственный советник. 2018. № 3. С. 5-9.
Баллод Б. А., Елизарова Н. Н. Методы и алгоритмы принятия решений в экономике: учебное пособие. М., 2014. 224 с.
Маратканова И. В. Применение метода кластерного анализа для оценки сберегательно-инвестиционного потенциала населения Сибирского федерального округа // Вестник Югорского государственного университета. 2021. № 1 (60). С. 48-61.
REFERENCES
Maratkanova I. V. Influence of factors of the internal and external environment on the savings behavior of households in Russia. Finance and credit. 2019. Vol. 25. No. 1 (781). Pp. 159-176.
Regions of Russia. Socio-economic indicators. 2022: Stat. Sat. / Rosstat. Moscow, 2022. 1112 p.
Bobkov V. N., Kolmakov I. B., Odintsova E. V. Social structure of Russian society in terms of housing provision. Criteria and quantitative identification, guidelines for state policy. Living standards of the population of regions of Russia. 2018. No. 2. Pp. 8-23.
Bobkov V. N., Herrmann P., Kolmakov I. B., Odintsova E. V. Two-criteria model of Russian society stratification by income and housing provision. Economy of the region. 2018. Vol. 14. Iss. 4. Pp. 1061-1075.
Bulgakov V. V. Methodological aspects of the analysis of the welfare of the population. Vestnik SSEU. 2020. No. 2 (81). Pp. 26-29.
Kormishkin E. D., Gorin V. A. The impact of inequality on economic growth: theoretical and empirical approaches. Innovative development of the economy. 2018. No. 5 (47). Pp. 46-51.
Repinskiy O. D., Gubanischeva M. A. Changes in housing construction industry in the Rf: securities as an alternative to Shared construction participation agreement. IOP Conference Series: Earth and Environmental Science. 2021. DOI: 10.1088/1755-1315/751/1/012169.
Gulyaeva N. P. Differentiation of the living conditions of the population as a factor in migration processes in Siberia. Labor Economics. 2018. Vol. 5. No. 1. Pp. 213-232.
Zharomsky V. S., Migranova L. A., Toksanbaeva M. S. Socio-economic inequality in Russia: dynamics and assessment methods. Population. 2018. Vol. 21. No. 4. Pp. 79-95.
Maslikhova E. A. Improving the methodology for evaluating the effectiveness of programs to improve the living conditions of the population. Science and education: history and modernity: an electronic collection of materials from 72-74 intra-university scientific and practical conferences. 2021. Pp. 63-69.
Perskaya V. V. The World Economic Forum in Davos: Poverty and Inequality in Income Distribution — Perverse Phenomena of Modern World Development. Economics. Taxes. Right. 2019. Vol. 12. No. 2. Pp. 49-58.
Ryabova T. F., Surai N. M. Quality of life of the population of Russia: state, problems, prospects. Economics Profession Business. 2022. No. 2. Pp. 98-106.
Sergienko A. M. Agro-industrial regions: dynamics of incomes of the population, inequality and poverty. Economics Profession Business. 2020. No. 4. Pp. 108-117.
Andreeva E. I., Bychkov D. G., Feoktistova O. A. Efficiency of regional policies for social support of the population. Problems of Forecasting. 2021. No. 5. Pp. 101-110.
Balikoev V. Z., Maratkanova I. V., Shvetsov Yu. G. Assessment of the savings potential of households in the Siberian Federal District: monograph. Novosibirsk, 2022. 207 p.
Leonidova G. V., Basova E. A., Rassadina M. N. Cluster analysis of income inequality of the population of Russian regions. Problems of territory development. 2022. Vol. 26. No. 6. Pp. 94-114.
Bikeeva M. V., Moiseeva I. V. Measurement of economic inequality: problems, facts and assessment. Social statistics. 2019. No. 6. Pp. 48-56
Golovanova L. A. Differentiation of the standard of living of the population in the regions of the Far Eastern Federal District. Vestnik ToGU. 2019. No. 4 (55). Pp. 45-54.
Zvyagintseva A. V., Shvetsova A. A. Cluster analysis of Russian regions in terms of housing and communal services. Zhilishchnoe stroitel'stvo. 2018. No. 8. Pp. 40-43.
Rossoshansky A. I. Typology of Russian regions in terms of the quality of life of the population. State Counselor. 2018. No. 3. Pp. 5-9.
Ballod B. A., Elizarova N. N. Methods and algorithms for making decisions in economics: a tutorial. Moscow, 2014. 224 p.
Maratkanova I. V. Application of the cluster analysis method to assess the savings and investment potential of the population of the Siberian Federal District. Bulletin of the Yugorsk State University. 2021. No. 1 (60). Pp. 48-61.
Economics Profession Business is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Economics Profession Business (EPB) allows authors to deposit manuscripts (currently under review or those for intended submission to EPB) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).