Abstract
Bacterial nanocellulose is a unique material that has no analogues and has a huge range of applications. In this work, alkaline delignification with 4% sodium hydroxide solution was chosen as a chemical pretreatment, and the alkaline delignification product of miscanthus was obtained as a result. As a result of this treatment, the chemical composition of the alkaline delignification product changed in comparison with native miscanthus as follows: decrease in lignin content by 2.3 times and pentosans by 9.0 times, increase in cellulose content by 1.7 times. As a result of enzymatic hydrolysis of alkaline delignification product of miscanthus, the final concentration of reducing substances reached 12.0 g/L, nutrient medium was prepared from this hydrolysate (by introducing phenolic substances of black tea and pasteurization), then bacterial nanocellulose biosynthesis was carried out. The symbiotic culture of Medusomyces gisevii Sa-12 was used as the producer. As a control, biosynthesis of bacterial nanocellulose was carried out on semi-synthetic glucose nutrient medium under the same conditions. It was found that on the medium obtained from miscanthus, the number of acetic acid bacteria was 4.0 times lower, the number of yeasts was 2.5 times lower, the yield of bacterial nanocellulose was 3.8 times lower, and the degree of polymerization of bacterial nanocellulose was 2.9 times lower than on the semi-synthetic nutrient medium. These indicators indicate the biological poor quality of the nutrient medium obtained from miscanthus, which is primarily due to the method of pre-treatment (alkaline delignification) and is presumably associated with the presence of residual sodium ions in the nutrient medium. It should be emphasized that the results of scanning electron microscopy revealed that the thickness of microfibrils of bacterial nanocellulose obtained on miscanthus medium was 1.5 times lower than in the control.
References
2. Stumpf T.R., Yang X., Zhang J., et al. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C. 2018. Vol. 82. P. 372-383.
3. Skiba E. A., Gladysheva E.K., Budaeva V.V., et al. Yield and quality of bacterial cellulose from agricultural waste. Cellulose. 2022. Vol. 29. № 3. P. 1543-1555.
4. Skiba E.A., Baibakova O.V., Gladysheva E.K., et al. Study of the influence of Medusomyces gisevii Sa-12 inoculum dosage on bacterial cellulose yield and degree of polymerization. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019. Vol. 9. № 3 (30). P. 420-429.
5. Jamal S.H., Roslan N.J., Shah N.A.A, et al. Conversion of bacterial cellulose to cellulose nitrate with high nitrogen content as propellant ingredient. Solid State Phenomena. 2021. Vol. 317. P. 305-311.
6. Roslan N.J., Jamal S.H., Ong K.K., et al. Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. Solid State Phenomena. 2021. Vol. 317. P. 312-319.
7. Huang J. Zhao M., Hao Y., et al. Recent Advances in Functional Bacterial Cellulose for Wearable Physical Sensing Applications. Advanced Materials Technologies. 2021. Vol. 7. P. 1-14.
8. Wang Y., Jiang L., Dong J., et al. Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. Journal of Materials Research and Technology. 2020. Vol. 9. № 6. P. 15094-15101.
9. Chen J.L., Njoku D.I., Tang C., et al. Advances in Microfluidic Paper Based Analytical Devices (µPADs): Design, Fabrication, and Applications. Small Methods. 2024. P. 2400155.
10. Горбатова П.А., Корчагина А.А., Гисматулина Ю.А. и др. Свойства нитратов целлюлозы, полученных нитрованием бактериальной целлюлозы с использованием смеси азотной и серной кислот. Известия вузов. Прикладная химия и биотехнология. 2024. Т. 14. № 2. С. 236–244.
11. Shavyrkina N.A., Skiba E.A., Kazantseva A.E., et al. Static culture combined with aeration in biosynthesis of bacterial cellulose. Polymers. 2021. Vol. 13. № 23. P. 4241.
12. Корчагина А.А. Синтез нитратов целлюлозы из целлюлозы мискантуса гигантского сорта Камис, полученной в условиях опытно-промышленного производства. Известия вузов. Прикладная химия и биотехнология. 2023. Т. 13. № 3 (46). С. 392-401.
13. Budaeva V.V., Gismatulina Y.A., Mironova G.F., et al. Bacterial nanocellulose nitrates. Nanomaterials. 2019. Vol. 9. № 12. P. 1694.
14. Корчагина А. А., Горбатова П. А., Будаева В. В., Золотухин В. Н. Нитрование целлюлозы с высокой степенью полимеризации из мискантуса сорта Сорановский. Журн. Сиб. федер. ун-та. Химия, 2024, 17(2). С. 268–278.
15. Liu J. Nitrate esters chemistry and technology. Singapore: Springer, 2019. 684 p.
16. Mattar H., Baz Z., Saleh A., et al. Nitrocellulose: Structure, synthesis, characterization, and applications. Water Energy Food Environ. 2020. Vol. 3. P. 1-15.
17. Skiba, E.A., Shavyrkina, N.A., Skiba, M.A, et al. Biosynthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer. International Journal of Molecular Sciences. 2023. Vol. 24. № 18. P. 14401.
18. Kashcheyeva E.I., Korchagina A.A., Gismatulina Y.A., et al. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers. 2024. Vol. 16. P. 42.

This work is licensed under a Creative Commons Attribution 4.0 International License.