TRANSFORMATION OF MISCANTHUSIASTUS GIANTUS INTO PRODUCTS OF BIOTECHNOLOGICAL SYNTHESIS: CALCULATION OF MATERIAL FLOWS
PDF (Русский)

Keywords

Miscanthus giganteus
alkaline delignification
nitric acid
enzymatic hydrolysis
bioethanol
bacterial nanocellulose
lactic acid

How to Cite

Skiba E. TRANSFORMATION OF MISCANTHUSIASTUS GIANTUS INTO PRODUCTS OF BIOTECHNOLOGICAL SYNTHESIS: CALCULATION OF MATERIAL FLOWS // BIOAsia-Altai, 2024. Vol. 4, № 1. P. 500-504. URL: https://journal.asu.ru/bioasia/article/view/16507.

Abstract

The profitability of the transformation of cellulose-containing raw materials into products with high added value is achievable only if commercial products are obtained from all its components. This paper presents the calculation of material flows for the complete processing of giant miscanthus into biotechnological synthesis products with the release of two groups of platform (intermediate) compounds: C6 sugars and lignin. Within the C6 platform, two platform chemical compounds were obtained by biotechnology methods, which are basic in modern technical chemistry: bioethanol and lactic acid, in addition, the most important biopolymer, bacterial nanocellulose, was obtained. In order to ensure the high quality of nutrient media from giant miscanthus, the products of biotechnological synthesis were obtained through the stage of enzymatic hydrolysis. For each product of biotechnological synthesis, four original methods of preliminary chemical treatment of giant miscanthus were studied, carried out at atmospheric pressure using dilute solutions of nitric acid and sodium hydroxide. High efficiency of transformation of giant miscanthus into products of biotechnological synthesis is shown, yields close to world leaders are achieved. The most appropriate method of preliminary processing of giant miscanthus is single-stage treatment with a dilute solution of nitric acid, this method allows to increase the yield of bioethanol by 12-40%, bacterial nanocellulose - by 13-30%, lactic acid by 13-28% compared to other author's methods of preliminary processing.

PDF (Русский)

References

1. Холькин Ю.И. Технология гидролизных производств: учебник для вузов. – М.: Лесная промышленность, 1989. – 496 с.

2. Padella M., O’Connell A., & Prussi M. (2019). What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector // Applied Sciences. 2019. 9(21). 4523. https://doi.org/10.3390/app9214523

3. Zhou, Z., Liu, D., & Zhao, X. (2021). Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose // Renewable and Sustainable Energy Reviews. 2021. 146. 111169. https://doi.org/10.1016/j.rser.2021.111169

4. Srivastava, R. K., Nedungadi, S. V., Akhtar, N., Sarangi, P. K., Subudhi, S., Shadangi, K. P., & Govarthanan, M. (2023). Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review // Science of The Total Environment. 2023. 859. 160260. https://doi.org/10.1016/j.scitotenv.2022.160260

5. Gani, R., Bałdyga, J., Biscans, B., Brunazzi, E., Charpentier, J. C., Drioli, E., ... & Woodley, J. M. (2020). A multi-layered view of chemical and biochemical engineering // Chemical Engineering Research and Design. 2021. 155., A133-A145. https://doi.org/10.1016/j.cherd.2020.01.008

6. Skiba E.A., Ovchinnikova E.V., Budaeva V.V., Banzaraktsaeva S.P., Kovgan M.A., Chumachenko V. A., Mironova G.F., Kortusov A.N., Parmon V.N., Sakovich, G. V. Miscanthus bioprocessing using HNO3-pretreatment to improve productivity and quality of bioethanol and downstream ethylene // Industrial Crops and Products. 2022. 177. 114448. https://doi.org/10.1016/j.indcrop.2021.114448

7. Skiba E.A., Gladysheva E.K., Golubev D.S., Budaeva V.V., Aleshina L.A., Sakovich G.V., Self-standardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass // Carbohydrate Polymers. 2021. 252. 117178, https://doi.org/10.1016/j.carbpol.2020.117178

8. Shavyrkina NA, Skiba EA. Obtaining lactic acid from oat husks // Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2021. 11 (1). 99–106. (In Russian) https://doi.org/10.21285/2227-2925-2021-11-1-99-10621

9. Skiba E.A., Skiba M.A., Pyatunina O.I. Nitric acid solution after treating miscanthus as a growth regulator of seed peas (Pisum sativum L.) in vitro // Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2021. 11(3). 413-420. (In Russian) https://doi.org/10.21285/2227-2925-2021-11-3-413-420

10. Makul N. Modern sustainable cement and concrete composites: Review of current status, challenges and guidelines // Sustainable Materials and Technologies/ 2020. 25. e00155. https://doi.org/10.1016/j.susmat.2020.e00155

11. Brienza, F., Cannella, D., Montesdeoca, D., Cybulska, I., & Debecker, D. P. (2024). A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. RSC Sustainability, 2(1), 37-90. https://doi.org/10.1039/D3SU00140G

12. Zhang Y., Oates L.G., Serate J., Xie D., Pohlmann E., Bukhman Y.V., Karlen S.D., Young M.K., Higbee A., Eilert D., Sanford G.R., Piotrowski J.S., Cavalier D., Ralph J., Coon J.J., Sato T.K., Ong R.G. Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape-level environmental benefits // GCB Bioenergy. – 2018. – Р. 1-16. https://doi.org/10.1111/gcbb.12533

13. Son, J., Lee, K.H., Lee, T., Kim, H.S., Shin,W.H., Oh, J.-M., Koo, S.-M., Yu, B.J., Yoo, H.Y., Park, C. Enhanced Production of Bacterial Cellulose from Miscanthus as Sustainable Feedstock through Statistical Optimization of Culture Conditions. Int. J. Environ. Res. Public Health 2022, 19, 866. https://doi.org/10.3390/ijerph19020866

14. Gunes K, Sargin S, Celiktas MS (2023) Investigation of lactic acid production by pressurized liquid hot water from cultivated Miscanthus × giganteus. Prep Biochem Biotechnol 53:22–30. https://doi.org/10.1080/10826068.2022.2035745

15. Chung, M. R. W. Y., Tan, I. S., Foo, H. C. Y., Lam, M. K., & Lim, S. (2023). Potential of macroalgae-based biorefinery for lactic acid production from exergy aspect. Biomass Conversion and Biorefinery, 13(4), 2623-2653. https://doi.org/10.1007/s13399-021-01375-3
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Metrics

Metrics Loading ...