BACTERIAL CONVERSION OF THE PHARMACEUTICAL CONTAMINANT MELOXICAM
PDF (Русский)

Keywords

actinomycetes
bioconversion
pharmpollutants
meloxicam
Gordonia
metabolites

How to Cite

Tyan S. BACTERIAL CONVERSION OF THE PHARMACEUTICAL CONTAMINANT MELOXICAM // BIOAsia-Altai, 2024. Vol. 4, № 1. P. 245-250. URL: http://journal.asu.ru/bioasia/article/view/16324.

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively used in natural habitats as a result of ongoing use, which negatively affects living things at many levels, from the molecular to the ecological. Stress-tolerant actinomycetes (class Actinomycetes) are increasingly relevant to address the issue of pharmaceutical environmental pollution as interest in biotechnology solutions in the global bioeconomy grows. We chose the strain of Gordonia alkanivorans IEGM 1277, which is able to bioconvert meloxicam, one of the most often found NSAIDs in open ecosystems, to hydroxymethyl- and carboxymeloxicam in wastewater from pharmaceutical manufacturing. Meloxicam metabolites have not been shown to be harmful to test bacterial cultures or vertebrates in experiments. It was determined that gordonium cells undergo marked adaptive changes using extremely sensitive micro- and spectroscopy techniques (AFM, TEM-EDX). These changes ranged from the synthesis of biosurfactants and modification of morphometric properties (length, width, volume, etc.) to the accumulation of intracellular lipids and polyphosphates. The actinomycete G. alkanivorans IEGM 1277 underwent whole genome sequencing in order to provide a Catalog of genes encoding meloxicam oxidation enzymes.

PDF (Русский)

References

1. Вихарева Е.В., Карпенко Ю.Н., Селянинов А.А., Бажутин Г.А., Тюмина Е.А. Хроматографический анализ мелоксикама и его метаболитов в процессе бактериальной деструкции // Известия Академии наук. Серия химическая. 2022. № 11. С. 2358–2364.

2. Прозоровский В.Б., Прозоровская М.П., Демченко В.М. Экспресс-метод определения средней эффективной дозы и ее ошибки // Фармакология и токсикология. 1978. № 41. С. 497–502.

3. Тян С.М., Тюмина Е.А. Скрининг актинобактериальных штаммов – биодеструкторов мелоксикама. Микробиология: вчера, сегодня, завтра [Электронный ресурс]: тез. докл. Международной научной конференции, посвященной 100-летию основания кафедры микробиологии в Казанском университете, 20–21 декабря 2021 г., Казань: Изд-во Казанского университета, 2021. 77 с.

4. aus der Beek T., Weber F.A., Bergmann A., Hickmann S., Ebert I., Küster A.H.A. Pharmaceuticals in the environment. Global occurrences and perspectives // Environmental Toxicology and Chemistry. 2016. Vol. 35. P. 823–835.

5. Bazhutin G.A., Tymina E.A., Subbotina M.V., Tyan S.M. Biotransformation of ibuprofen and meloxicam by Rhodococcus cerastii IEGM 1243 and Gordonia amicalis IEGM 1277 cells. Материалы всероссийской научно-практической конференции с международным участием “Химия. Экология. Урбанистика” (28–29 апреля 2022 г.). Пермь: Издательство Пермского национального исследовательского политехнического университета. 2022. Т. 2. С. 199–202.

6. da Silva J.C., Bigolin C., da Silva L.C., Saraiva T.E.S., Menezes J.M., Veiverberg A., Charão M.F., Betti A.H. Neurotoxicity evaluation of meloxicam in the alternative in vivo model, Caenorhabditis elegans // International Journal for Innovation
Education and Research. 2020. Vol. 8. P. 319–325.

7. Herrero-Villar M., Velarde R., Camarero P.R., Taggart M.A., Bandeira V., Fonseca C., Marco I., Mateo R. NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain // Environmental Pollution. 2020. Vol. 266. P. 269–278.

8. Ivshina I.B., Kuyukina M.S., Litvinenko L.V., Golysheva A.A., Kostrikina N.A., Sorokind V.V., Mulyukin A.L. Bioaccumulation of molybdate ions by alkanotrophic Rhodococcus leads to significant alterations in cellular ultrastructure and physiology // Environmental Pollution. 2024. Vol. 274. Article 116190.

9. Ivshina I.B., Kuyukina M.S., Philp J.C., Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species // World Journal of Microbiology and Biotechnology. 1998. Vol. 14. P. 711–717.

10. Ivshina I.B., Tyumina E.A., Kuzmina M.V., Vikhareva E.V. Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346 // Scientific Reports. 2019. Vol. 9. Article 9159.

11. Kuyukina M.S., Ivshina I.B., Gavrin A.Yu., Podorozhko E.A., Lozinsky V.I., Jeffree C., Philp J. Immobilization of hydrocarbon-oxidizing bacteria in poly (vinyl alchohol) cryogels hydrophobized using a biosurfactant // Journal of Microbiological Methods. 2006. Vol. 65. P. 596–603.

12. McCann N.C., Lynch T.J., Kim S.O., Duffy D.M. The COX-2 inhibitor meloxicam prevents pregnancy when administered as an emergency contraceptive to nonhuman primates // Contraception. 2013. Vol. 88. P. 744–748.

13. Sheikhlangi Z., Gharaei A., Harijani J.M., Davari S.A., Hassanein P., Rahdari A. Toxicological effects of meloxicam on physiological and antioxidant status of common carp (Cyprinus carpio) // Veterinary Medicine and Science. 2023. Vol. 9. P. 2085–2094.

14. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G.F., Chater K.F., van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum // Microbiology and Molecular Biology Reviews. 2007. Vol. 71. P. 495–548.

15. Wilkinson J.L., Thornhill I., Oldenkamp R., Gachanja A., Busquets R. Pharmaceuticals and personal care products in the aquatic environment: How can regions at risk be identified in the future? // Environmental Toxicology and Chemistry. 2024. Vol. 43. P. 575–588.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Metrics

Metrics Loading ...