IDEAL PROPERTIES OF BACTERIAL NANOCELLULOSE FOR ITS FUNCTIONALIZATION
PDF (Русский)

Keywords

bacterial nanocellulose
Medusomyces gisevii
nitration
sulfur nitrogen mixture
bacterial nanocellulose nitrates

How to Cite

Gorbatova P., Shavyrkina N. IDEAL PROPERTIES OF BACTERIAL NANOCELLULOSE FOR ITS FUNCTIONALIZATION // BIOAsia-Altai, 2024. Vol. 4, № 1. P. 417-421. URL: https://journal.asu.ru/bioasia/article/view/16464.

Abstract

The aim of this study was to investigate the chemical functionalization of bacterial nanocellulose to produce bacterial nanocellulose nitrates. Two samples of bacterial nanocellulose BNC-1 and BNC-2 with degree of polymerization 3950 and 5750, respectively, were obtained using symbiotic culture of Medusomyces gisevii Sa-12 on synthetic glucose medium as a producer. Nitration was carried out by commercial sulfur-nitric acid mixture followed by stabilization of the synthesized cellulose nitrates. The obtained bacterial nanocellulose nitrates NBNC-1 and NBNC-2 were characterized by the mass fraction of nitrogen 10.84 and 11.56 %, viscosity of acetone solution 255 and 744 mPa*s, solubility in alcohol-ether mixture 16.5 and 62.2 %, respectively. The dependence of bacterial nanocellulose nitrates parameters on the degree of cellulose polymerization was established: the higher the degree of bacterial nanocellulose polymerization, the lower the mass fraction of nitrogen and the higher the viscosity of the obtained bacterial nanocellulose nitrates. The IR spectra of bacterial nanocellulose nitrates registered the main functional groups confirming that the synthesized products are low-substituted nitric acid esters of cellulose: 1637 and 1657 cm-1, 1274 and 1281 cm-1, 825 and 836 cm-1, 747 and 749 cm-1, 681 and 691 cm-1. It was found by SEM that the reticulate structure of bacterial nanocellulose is also preserved in its nitrates. It was found that the synthesized nitrates of bacterial nanocellulose are nanostructured and highly viscous cellulose nitrates, which is explained by the properties of the initial bacterial nanocellulose and is distinctive properties from cellulose nitrates of plant origin. 

PDF (Русский)

References

1. Горбатова П.А., Гисматулина Ю.А., Корчагина А.А. и др. Зависимость массовой доли азота в нитратах бактериальной наноцеллюлозы от содержания воды в нитрующей смеси. Южно-Сибирский научный вестник. 2023. № 5 (51). С. 75-81.

2. Stumpf T.R., Yang X., Zhang J., et al. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C. 2018. Vol. 82. P. 372-383.

3. Skiba E. A., Gladysheva E.K., Budaeva V.V., et al. Yield and quality of bacterial cellulose from agricultural waste. Cellulose. 2022. Vol. 29. № 3. P. 1543-1555.

4. Skiba E.A., Baibakova O.V., Gladysheva E.K., et al. Study of the influence of Medusomyces gisevii Sa-12 inoculum dosage on bacterial cellulose yield and degree of polymerization. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2019. Vol. 9. № 3 (30). P. 420-429.

5. Jamal S.H., Roslan N.J., Shah N.A.A, et al. Conversion of bacterial cellulose to cellulose nitrate with high nitrogen content as propellant ingredient. Solid State Phenomena. 2021. Vol. 317. P. 305-311.

6. Roslan N.J., Jamal S.H., Ong K.K., et al. Preliminary study on the effect of sulphuric acid to nitric acid mixture composition, temperature and time on nitrocellulose synthesis based Nata de Coco. Solid State Phenomena. 2021. Vol. 317. P. 312-319.

7. Huang J. Zhao M., Hao Y., et al. Recent Advances in Functional Bacterial Cellulose for Wearable Physical Sensing Applications. Advanced Materials Technologies. 2021. Vol. 7. P. 1-14.

8. Wang Y., Jiang L., Dong J., et al. Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. Journal of Materials Research and Technology. 2020. Vol. 9. № 6. P. 15094-15101.

9. Chen J.L., Njoku D.I., Tang C., et al. Advances in Microfluidic Paper Based Analytical Devices (µPADs): Design, Fabrication, and Applications. Small Methods. 2024. P. 2400155.

10. Горбатова П.А., Корчагина А.А., Гисматулина Ю.А. и др. Свойства нитратов целлюлозы, полученных нитрованием бактериальной целлюлозы с использованием смеси азотной и серной кислот. Известия вузов. Прикладная химия и биотехнология. 2024. Т. 14. № 2. С. 236–244.

11. Shavyrkina N.A., Skiba E.A., Kazantseva A.E., et al. Static culture combined with aeration in biosynthesis of bacterial cellulose. Polymers. 2021. Vol. 13. № 23. P. 4241.

12. Корчагина А.А. Синтез нитратов целлюлозы из целлюлозы мискантуса гигантского сорта Камис, полученной в условиях опытно-промышленного производства. Известия вузов. Прикладная химия и биотехнология. 2023. Т. 13. № 3 (46). С. 392-401.

13. Budaeva V.V., Gismatulina Y.A., Mironova G.F., et al. Bacterial nanocellulose nitrates. Nanomaterials. 2019. Vol. 9. № 12. P. 1694.

14. Корчагина А. А., Горбатова П. А., Будаева В. В., Золотухин В. Н. Нитрование целлюлозы с высокой степенью полимеризации из мискантуса сорта Сорановский. Журн. Сиб. федер. ун-та. Химия, 2024, 17(2). С. 268–278.

15. Liu J. Nitrate esters chemistry and technology. Singapore: Springer, 2019. 684 p.

16. Mattar H., Baz Z., Saleh A., et al. Nitrocellulose: Structure, synthesis, characterization, and applications. Water Energy Food Environ. 2020. Vol. 3. P. 1-15.

17. Skiba, E.A., Shavyrkina, N.A., Skiba, M.A, et al. Biosynthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer. International Journal of Molecular Sciences. 2023. Vol. 24. № 18. P. 14401.

18. Kashcheyeva E.I., Korchagina A.A., Gismatulina Y.A., et al. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers. 2024. Vol. 16. P. 42.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.